Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(10): e1009435, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597293

RESUMO

In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.


Assuntos
Acetilcolina/farmacologia , Região CA3 Hipocampal , Memória , Norepinefrina/farmacologia , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Biologia Computacional , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos
2.
Cereb Cortex ; 30(12): 6135-6151, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32607551

RESUMO

Release of the neuromodulator noradrenaline signals salience during wakefulness, flagging novel or important experiences to reconfigure information processing and memory representations in the hippocampus. Noradrenaline is therefore expected to enhance hippocampal responses to synaptic input; however, noradrenergic agonists have been found to have mixed and sometimes contradictory effects on Schaffer collateral synapses and the resulting CA1 output. Here, we examine the effects of endogenous, optogenetically driven noradrenaline release on synaptic transmission and spike output in mouse hippocampal CA1 pyramidal neurons. We show that endogenous noradrenaline release enhances the probability of CA1 pyramidal neuron spiking without altering feedforward excitatory or inhibitory synaptic inputs in the Schaffer collateral pathway. ß-adrenoceptors mediate this enhancement of excitation-spike coupling by reducing the charge required to initiate action potentials, consistent with noradrenergic modulation of voltage-gated potassium channels. Furthermore, we find the likely effective concentration of endogenously released noradrenaline is sub-micromolar. Surprisingly, although comparable concentrations of exogenous noradrenaline cause robust depression of slow afterhyperpolarization currents, endogenous release of noradrenaline does not, indicating that endogenous noradrenaline release is targeted to specific cellular locations. These findings provide a mechanism by which targeted endogenous release of noradrenaline can enhance information transfer in the hippocampus in response to salient events.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/fisiologia , Locus Cerúleo/fisiologia , Norepinefrina/fisiologia , Células Piramidais/fisiologia , Receptores Adrenérgicos beta/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos Endogâmicos C57BL
3.
Artigo em Inglês | MEDLINE | ID: mdl-27799909

RESUMO

The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval.

4.
Biochem J ; 472(3): 367-77, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26450925

RESUMO

Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3-silencing mediator of retinoic and thyroid receptors (SMRT)-deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation.


Assuntos
Histona Desacetilases/metabolismo , Microtúbulos/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Benzamidas/farmacologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Humanos , Microtúbulos/genética , Correpressor 2 de Receptor Nuclear/genética , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...