Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 120(10): 18104-18116, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172606

RESUMO

Triple-negative breast cancer (TNBC) is the most outrageous subtype of breast cancer. Emphasizing the urge of new approach in cancer therapy, combinational drug therapy may be proven as an effective strategy. In our previous study, we reported that coralyne (COR) with paclitaxel (PTX) efficiently decreases the proliferation of MDA-MB-231 compared with MCF-7 cell line. Thus, we studied the effect of COR and PTX in combination on apoptosis of MDA-MB-231 cell line. In silico results demonstrated that COR intercalates DNA at a minor groove. In vitro approaches revealed that in combination (COR and PTX) increases the efficacy of apoptosis in MDA-MB-231 cell line by a significant increase in G1/S phase arrest, DNA fragmentation, and change in mitochondria membrane potential. The expression of ATM and ATR a serine/threonine-protein kinase, ataxia telangiectasia and Rad3-related protein were depleted with an increase in time from 24 to 48 hours in concurrent with increased levels of γH2AX indicating that DNA damage routes cells to enter apoptosis. This was confirmed by high levels of caspase-3 and cytochrome c. Also, the decrease in the expression levels of matrix metalloproteinase-9 confirmed the antimetastatic efficacy of COR + PTX. The present study indicates that the synergistic effect of COR and PTX can enhance apoptosis in MDA-MB-231 cell line and may be proven as a potential anticancer therapy against TNBC.


Assuntos
Apoptose/efeitos dos fármacos , Alcaloides de Berberina/farmacologia , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Alcaloides de Berberina/administração & dosagem , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Fragmentação do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Paclitaxel/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Biophys Rev ; 11(2): 227-234, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30796734

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive and prevalent subtype of breast cancer in women worldwide. Currently, chemotherapy remains the main modality for the treatment at an early stage, as there is no approved targeted therapy for early TNBC. In this review, we investigate the use of microRNAs (miRNAs), which play a key role in the post-transcriptional regulation of genes involved in the key biological processes, namely proliferation, differentiation, angiogenesis, migration, apoptosis, and carcinogenesis. Here, we emphasize the importance of the recent advances related to miRNAs, involving diagnosis, prognosis, and treatment of TNBC. We focus on the development, optimization, and stabilization of miRNA-based drugs; improvement of miRNA delivery; and control of the off-target effects of miRNA therapeutics. We speculate as to which features may present themselves as promising approaches in the treatment of TNBC.

3.
Indian J Med Res ; 147(2): 158-168, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29806604

RESUMO

BACKGROUND & OBJECTIVES: Search for novel compounds beneficial to the treatment of cancer attracts a great deal of attention. We earlier demonstrated the isolation of 5,7-dihydroxy-2-[4'-hydroxy-3'-(methoxymethyl)phenyl]-6-C-ß-glucopyranosyl flavone, a novel C-glycosyl flavone from Urginea indica bulb. The present study was undertaken to investigate the effect of this novel compound on human normal epithelial and breast, hepatic and colon cancer cell lines. METHODS: : The maximum non-toxic concentration (MNTC) and cytotoxicity of C-glycosyl flavone were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Cell cycle was analyzed by flow cytometry. Docking studies were performed to predict possible targets. Levels of cyclin-dependent kinase 1 (CDK1) and CDK6, Bcl2 and BAX and cytochrome c were quantified by specific ELISA. Mitochondrial membrane potential was determined using JC-1 dye. Apoptosis was quantified by Annexin V ELISA method. RESULTS: : Flow cytometry analysis demonstrated G0/G1 arrest. In silico docking studies predicted CDK1 and CDK6 as a possible target of C-glycosyl flavone. In vitro study confirmed CDK6 as the main target in C-glycosyl flavone-treated cancer cell lines. C-glycosyl flavone treatment also induced membrane blebbing, chromatin fragmentation and nucleosome formation. C-glycosyl flavone treatment caused marked loss of mitochondrial membrane potential, decrease in Bcl2/BAX ratio and activation of caspase-3 and release of caspase-9 and cytochrome c. In addition, C-glycosyl flavone inhibited the tumour-induced angiogenesis and reduced the vascular endothelial growth factor levels. Similarly, CDK6 inhibitor significantly inhibited proliferation and angiogenesis and induced apoptosis in tested cell lines. INTERPRETATION & CONCLUSIONS: The results indicate that C-glycosyl flavone may exert induction of apoptosis, cell cycle arrest and inhibition of angiogenesis via CDK6. Thus, targeting CDK6 using C-glycosyl flavone may serve as a novel therapeutic approach for the treatment of breast, hepatic and colon cancers.


Assuntos
Quinase 6 Dependente de Ciclina/genética , Drimia/química , Flavonas/administração & dosagem , Neovascularização Patológica/tratamento farmacológico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Feminino , Flavonas/química , Flavonas/isolamento & purificação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia
4.
Asia Pac J Clin Oncol ; 14(6): 383-391, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29575602

RESUMO

Exosomes are cell-cell communicators emerging as a new paradigm for noninvasive diagnosis and prognosis of treatment response. Exosomal tetraspanin proteins like CD63, CD9 and CD81 play a critical role in sorting, selective recruitment of biomolecules, target selection, cell-specific entry, capturing, angiogenesis and vasculogenesis. These tetraspanins are being used as markers for oral, colorectal and colon cancers and glioblastoma. However, exosomal markers with robust specificity for early detection of carcinomas are the furthest along. EXO CARTA database shows the presence of CD151 in exosomes of colorectal, melanoma, ovarian and prostate cancers. CD151 preferentially targets exosomes to lung, lymph node and stroma cells. The present review discussed the possible role of tetraspanins in the formation, cargo selection, target selection and uptake of exosomes and suggests exciting new directions for future research.


Assuntos
Biomarcadores Tumorais/metabolismo , Exossomos/metabolismo , Neoplasias/patologia , Tetraspaninas/metabolismo , Progressão da Doença , Humanos , Metástase Neoplásica , Neoplasias/metabolismo
5.
Biomark Insights ; 13: 1177271918755391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449774

RESUMO

BACKGROUND: Cancer is one of the major heterogeneous disease with high morbidity and mortality with poor prognosis. Elevated levels of reactive oxygen species (ROS), alteration in redox balance, and deregulated redox signaling are common hallmarks of cancer progression and resistance to treatment. Mitochondria contribute mainly in the generation of ROS during oxidative phosphorylation. Elevated levels of ROS have been detected in cancers cells due to high metabolic activity, cellular signaling, peroxisomal activity, mitochondrial dysfunction, activation of oncogene, and increased enzymatic activity of oxidases, cyclooxygenases, lipoxygenases, and thymidine phosphorylases. Cells maintain intracellular homeostasis by developing an immense antioxidant system including catalase, superoxide dismutase, and glutathione peroxidase. Besides these enzymes exist an important antioxidant glutathione and transcription factor Nrf2 which contribute in balancing oxidative stress. Reactive oxygen species-mediated signaling pathways activate pro-oncogenic signaling which eases in cancer progression, angiogenesis, and survival. Concomitantly, to maintain ROS homeostasis and evade cancer cell death, an increased level of antioxidant capacity is associated with cancer cells. CONCLUSIONS: This review focuses the role of ROS in cancer survival pathways and importance of targeting the ROS signal involved in cancer development, which is a new strategy in cancer treatment.

6.
Biomed Pharmacother ; 97: 359-368, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29091885

RESUMO

Triple negative breast cancer is a clinically challenging subtype due to lack of biomarker for rational targeted therapy. Lipid rafts are cholesterol enriched rigid platforms, which colocalize signalling molecules of cancer progression. This study explores the effect of lipid rafts disruption by cholesterol depleting agent, MßCD on induction of apoptosis and expression of WNT receptor LRP6, survivin and common apoptotic markers in TNBC cell lines. The in vitro effect of lipid rafts disruption on viability, single cell reproductive ability, proliferation and migration were evaluated by MTT, clonogenic, BrdU incorporation and wound scratch assays, respectively. The morphological changes were assessed by tryphan blue, Wright and Giemsa staining; nuclear changes by Hoechst staining. The induction of apoptosis was evaluated by AO/EtBr staining, DNA damage and DNA fragmentation assays. Expression of Caveolin-1, LRP6, ß-Catenin, Survivin, Bcl2, BAX, Caspase-3, Ki67 and c-myc were analyzed by PCR and Western blotting techniques. The lipid raft disruption resulted in reduction of the proliferation of MDA-MB 231 and MDA-MB 468 cells by 56.3 and 42.0%; survival fraction by 54.7 and 59.4%; migration by 44.3 and 48.4%, respectively. It also induced apoptosis by causing cell shrinkage, membrane blebbing, nuclear condensation, chromatin cleavage, oligonucleotide fragmentation with an apoptotic index of 59.1 and 46.6% in MDA-MB 231 and 468 cells, respectively. Further, it downregulated the expression of caveolin-1, LRP6, ß-catenin, survivin, Bcl2, ki67, c-myc and upregulated BAX, caspase-3. The cholesterol supplementation enhanced the clonogenic potential and upregulated the expression of caveolin-1 and LRP6. The results underline a potential effect of lipid rafts disruption on induction of apoptosis in TNBC cells.


Assuntos
Apoptose/fisiologia , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Apoptose/biossíntese , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Microdomínios da Membrana/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Microdomínios da Membrana/genética , Survivina , Neoplasias de Mama Triplo Negativas/genética
7.
Biomed Pharmacother ; 91: 436-445, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28475922

RESUMO

Breast cancer is one of the most frequently diagnosed cancer in woman. Triple-negative breast cancer (TNBC) is most aggressive form of breast cancer. There is a growing interest in the use of natural products in combinational chemotherapy to improve the effectiveness in combating proliferation of cancer cells. Here, we hypothesized that coralyne in combination with paclitaxel may exhibit synergistic effect on inhibition of proliferation, migration and induction of apoptosis in MCF-7 and MDA-MB-231 breast cancer cell lines. MTT and BrdU incorporation assays were performed to study the effect of drugs alone and in combination on cell cytotoxicity and proliferation of the breast cancer cell lines, respectively. Adhesion and wound healing assays were performed to study the cell and extracellular matrix interactions. In addition, expression of proliferation marker ki-67 and apoptotic markers Bax and Bcl-2 was determined to study the effect of coralyne in combination with paclitaxel by reverse transcriptase PCR and confirmed by Western blot. The results indicated the synergism between coralyne and paclitaxel on proliferation and migration of breast cancer cell lines. This study also showed that combinational drug treatment decreased the expression of ki-67 and there was an increase in pro apoptotic factor Bax with decreased in expression of anti-apoptotic factor Bcl-2 in breast cancer cell lines with negligible effect on normal breast cell line. Overall, our data described the promising therapeutic potential of coralyne in combination with paclitaxel in treating breast cancer at lower effective dose.


Assuntos
Alcaloides de Berberina/farmacologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Paclitaxel/farmacologia , Alcaloides de Berberina/química , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Paclitaxel/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Anticancer Agents Med Chem ; 17(9): 1256-1266, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28044935

RESUMO

BACKGROUND: C-glycosyl flavone, a phytochemical constituent in U.indica bulb, has been reported to possess cytotoxic activity. OBJECTIVE: The present study aims to investigate the toxicity and anticancer potentials of C-glycosyl flavone against Ehrlich ascites carcinoma mice model. METHOD: In present study, acute and chronic toxicity along with antitumor activity of C-glycosyl flavone isolated from U.indica bulb were Performed using in vitro and in vivo methods. Acute and chronic toxicity of C-glycosyl flavone was evaluated using Swiss albino mice. The effect of C-glycosyl flavone on proliferation of Ehrlich ascites carcinoma (EAC) cells was determined. Further, growth inhibition and dissemination were studied using EAC induced mice model. RESULTS: C-glycosyl flavone showed significant therapeutic potency against EAC cells in terms of reduced viability, cell cycle arrest, induction of apoptosis, inhibition of capillary formation, reduced VEGF levels. Moreover, there was reduction in body weight, tumor volume, viable tumor cells, increased survival of EAC induced mice upon C-glycosyl flavone treatment. Treatment also reduced dissemination of EAC cells into heart, kidney, liver and brain and diminished the pathological alterations induced by EAC cells in mice. In addition, there was an improvement in hemoglobin levels and counts of RBC, neutrophils, lymphocytes and monocytes in C-glycosyl flavone-treated mice with tumor. An enhancement of antioxidant status in C-glycosyl flavone treated EAC-bearing mice which appeared in terms of decreased serum thiobarbituric acid reactive substance and lipid peroxidation, increased GSH, SOD, Catalase and GPX. These results were comparable to a standard 5- fluorouracil treatment. C-glycosyl flavone exhibited safety profile in toxicity studies. CONCLUSION: Our study confirms the therapeutic potency of C-glycosyl flavone against EAC in inhibition of dissemination and growth of EAC in mice.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Drimia/química , Flavonas/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavonas/química , Flavonas/isolamento & purificação , Masculino , Camundongos , Relação Estrutura-Atividade
9.
BMC Complement Altern Med ; 16(1): 376, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680742

RESUMO

BACKGROUND: Hydrogen peroxide is continuously generated in living cells through metabolic pathways and serves as a source of reactive oxygen species. Beyond the threshold level, it damages cells and causes several human disorders, including cancer. METHODS: Effect of isolated 3-O-methyl quercetin and kaempferol on H2O2 induced cytotoxicity, ROS formation, plasma membrane damage, loss of mitochondrial membrane potential, DNA damage was evaluated in normal liver and lung cells. The RT-PCR analysis used to determine Nrf 2 gene expression. Calorimetric ELISA was used to determine Nrf2 and p-38 levels. Expression of SOD and catalase was analyzed by Western blot analysis. RESULTS: The present study isolated 3-O-methyl quercetin and kaempferol from the stem bark. They protected normal lung and liver cells from H2O2 induced cytotoxicity, ROS formation, membrane damage and DNA damage. Pre-treatment with 3-O-methyl quercetin and kaempferol caused translocation of Nrf2 from cytosol to nucleus. It also increased expression of p-p38, Nrf2, SOD and catalase in H2O2 treated lung and liver cells. CONCLUSION: The flavonoids isolated from S. anacardium significantly reduced H2O2 induced stress and increased expression of Nrf2, catalase and superoxide dismutase-2 indicating cytoprotective nature of 3-O-methylquercetin and kaempferol.

10.
J Breast Cancer ; 19(4): 372-384, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28053625

RESUMO

PURPOSE: Lipid rafts are cholesterol enriched microdomains that colocalize signaling pathways involved in cell proliferation, metastasis, and angiogenesis. We examined the effect of methyl-ß-cyclodextrin (MßCD)-mediated cholesterol extraction on the proliferation, adhesion, invasion, and angiogenesis of triple negative breast cancer (TNBC) cells. METHODS: We measured cholesterol and estimated cell toxicity. Detergent resistant membrane (DRM) and non-DRM fractions were separated using the OptiPrep gradient method. Cell cycles stages were analyzed by flow cytometry, apoptosis was assessed using the TdT-mediated dUTP nick end-labeling assay, and metastasis was determined using a Matrigel invasion assay. Neo-vessel pattern and levels of angiogenic modulators were determined using an in vitro angiogenesis assay and an angiogenesis array, respectively. RESULTS: The present study found that the cholesterol-depleting agent MßCD, efficiently depleted membrane cholesterol and caused concentration dependent (0.1-0.5 mM) cytotoxicity compared to nystatin and filipin III in TNBC cell lines, MDA-MB 231 and MDA-MB 468. A reduced proportion of caveolin-1 found in DRM fractions indicated a cholesterol extraction-induced disruption of lipid raft integrity. MßCD inhibited 52% of MDA-MB 231 cell adhesion on fibronectin and 56% of MDA-MB 468 cell adhesion on vitronectin, while invasiveness of these cells was decreased by 48% and 52% respectively, following MßCD treatment (48 hours). MßCD also caused cell cycle arrest at the G2M phase and apoptosis in MDA-MB 231 cells (25% and 58% cells, respectively) and in MDA-MB 468 cells (30% and 38% cells, respectively). We found that MßCD treated cells caused a 52% and 58% depletion of neovessel formation in both MDA-MB 231 and MDA-MB 468 cell lines, respectively. This study also demonstrated that MßCD treatment caused a respective 2.6- and 2.5-fold depletion of tyrosine protein kinase receptor (TEK) receptor tyrosine kinase levels in both TNBC cell lines. CONCLUSION: MßCD-induced cholesterol removal enhances alterations in lipid raft integrity, which reduces TNBC cell survival.

11.
Biomark Cancer ; 7: 7-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861224

RESUMO

Cluster of differentiation 151 (CD151) is a member of the mammalian tetraspanin family, which is involved in diverse functions such as maintaining normal cellular integrity, cell-to-cell communication, wound healing, platelet aggregation, trafficking, cell motility and angiogenesis. CD151 also supports de novo carcinogenesis in human skin squamous cell carcinoma (SCC) and tumor metastasis. CD151 interacts with α3ß1 and α6ß4 integrins through palmitoylation where cysteine plays an important role in the association of CD151 with integrins and non-integrin proteins. Invasion and metastasis of cancer cells were diminished by decreasing CD151 association with integrins. CD151 functions at various stages of cancer, including metastatic cascade and primary tumor growth, thus reinforcing the importance of CD151 as a target in oncology. The present review highlights the role of CD151 in tumor metastasis and its importance in cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA