Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-11, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193897

RESUMO

The vascular endothelial growth factor (VEGF) and its cell surface receptor, as well as the human VEGFR-2 domain kinase, are some of the signaling pathways that have received the most attention in this field. This study aimed to identify novel molecules as VEGFR-2 inhibitors using 3D-QSAR modeling based on 1,2,3-triazole. Docking studies and dynamic simulations were performed to analyze novel interactions with the inhibitors and validate the molecular docking, dynamic simulations, and ADMET analyses. The optimized CoMSIA/SEH model showed good statistical results, and molecular docking and molecular dynamics simulations demonstrated stability of M3 ligand with the receptor and provided insight into ligand-receptor interactions. The newly developed compounds performed well in ADMET evaluations and showed promising results using Lipinski's rule of five, suggesting that the molecule M3 could be a useful anti-angiogenesis agent. In conclusion, this study provides insights into the structure-activity relationship of VEGFR-2 inhibitors and identifies M3 as a potential new anti-angiogenesis drug. The methodology used in this study can be applied to other similar drug targets to discover new and potent inhibitors.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-14, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655700

RESUMO

The efficacy of 40 synthesized variants of 3,5-diaryl-1H-pyrazole and spiropyrazoline' derivatives as acetylcholinesterase inhibitors is verified using a quantitative three-dimensional structure-activity relationship (3D-QSAR) by comparative molecular field analysis (CoMFA) and molecular similarity index analysis (CoMSIA) models. In this research, different field models proved that CoMSIA/SE model is the best model with high predictive power compared to several models (Qved2 = O.65; R2 = 0.980; R2test = 0.727). Also, contour maps produced by CoMSIA/SE model have been employed to prove the key structural needs of the activity. Consequently, six new compounds have been generated. Among these compounds, M4 and M5 were the most active but remained toxic and had poor absorption capacities. While the M1, M2, M3 and M6 remained highly active while respecting ADMET's characteristics. Molecular docking results showed compound M2 better with acetylcholinesterase than compound 22. The interactions are classical hydrogen bonding with residues TYR:124, TYR:72, and SER:293, which play a critical role in the biological activity as AChE inhibitors. MD results confirmed the docking results and showed that compound M2 had satisfactory stability with (ΔGbinding = -151.225 KJ/mol) in the active site of AChE receptor compared with compound 22 (ΔGbinding = -133.375 KJ/mol). In addition, both compounds had good stability regarding RMSD, Rg, and RMSF. The previous results show that the newly designed compound M2 is more active in the active site of AChE receptor than compound 22.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...