Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Educ ; 98(6): 1963-1973, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37274366

RESUMO

Curriculum-based undergraduate research experiences (CUREs) have been shown to increase student retention in STEM fields and are starting to become more widely adopted in chemistry curricula. Here we describe a 10-week CURE that is suitable for a second-semester organic chemistry laboratory course. Students synthesize small molecules and use protein-observed 19F (PrOF) NMR to assess the small molecule's binding affinity to a target protein. The research project introduced students to multistep organic synthesis, structure-activity relationship studies, quantitative biophysical measurements (measuring Kd from PrOF NMR experiments), and scientific literacy. Docking experiments could be added to help students understand how changes in a ligand structure may affect binding to a protein. Assessment using the CURE survey indicates self-perceived skill gains from the course that exceed gains measured in a traditional and an inquiry-based laboratory experience. Given the speed of the binding experiment and the alignment of the synthetic methods with a second-semester organic chemistry laboratory course, a PrOF NMR fragment-based ligand discovery lab can be readily implemented in the undergraduate chemistry curriculum.

2.
J Neurosci ; 40(41): 7902-7920, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32917791

RESUMO

Whenever the retinal image changes, some neurons in visual cortex increase their rate of firing whereas others decrease their rate of firing. Linking specific sets of neuronal responses with perception and behavior is essential for understanding mechanisms of neural circuit computation. We trained mice of both sexes to perform visual detection tasks and used optogenetic perturbations to increase or decrease neuronal spiking primary visual cortex (V1). Perceptual reports were always enhanced by increments in V1 spike counts and impaired by decrements, even when increments and decrements in spiking were generated in the same neuronal populations. Moreover, detecting changes in cortical activity depended on spike count integration rather than instantaneous changes in spiking. Recurrent neural networks trained in the task similarly relied on increments in neuronal activity when activity has costs. This work clarifies neuronal decoding strategies used by cerebral cortex to translate cortical spiking into percepts that can be used to guide behavior.SIGNIFICANCE STATEMENT Visual responses in the primary visual cortex (V1) are diverse, in that neurons can be either excited or inhibited by the onset of a visual stimulus. We selectively potentiated or suppressed V1 spiking in mice while they performed contrast change detection tasks. In other experiments, excitation or inhibition was delivered to V1 independent of visual stimuli. Mice readily detected increases in V1 spiking while equivalent reductions in V1 spiking suppressed the probability of detection, even when increases and decreases in V1 spiking were generated in the same neuronal populations. Our data raise the striking possibility that only increments in spiking are used to render information to structures downstream of V1.


Assuntos
Estimulação Luminosa , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Algoritmos , Animais , Simulação por Computador , Sensibilidades de Contraste , Eletroencefalografia , Fenômenos Eletrofisiológicos , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Redes Neurais de Computação , Neurônios/fisiologia , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...