Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(13): 7008-7020, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38525827

RESUMO

The polymer brush architecture of the end-tethered polymer molecules is one of the most widely used efficient methods to regulate interfacial interactions in colloidal systems found in live matter and manufactured materials. Emerging applications of polymer brush structures require solutions to new tasks in the control of interfacial interactions. The rapid development of live cell manufacturing relies on scalable and efficient cell harvesting methods. Stimuli-responsive surfaces made of surface-grafted poly(N-isopropylacrylamide) (PNIPAM) can bind and detach the adherent cell upon changes in temperature and have been used for cell growth and harvesting. The applications are limited by the requirement to satisfy a range of PNIPAM coating characteristics that depend on the dimensions of the integrin complex in the cell membrane and the basal surface. The analysis of the microstructured surfaces, when adhesive and disjoining functions of the microdomains are decoupled, shows that many limitations of PNIPAM one-component coatings can be avoided by using a much broader range of structural characteristics of the microstructured interfaces composed of alternating disjoining PNIPAM domains and adhesive polymeric domains with cell-affinity functional groups. Temperature-controlled reversible adhesion to such microstructured interfaces is studied here experimentally with model systems of solid spherical particles and by employing simulations for solid and soft membranes interacting with the microstructured surfaces to mimic interactions with soft and solid disk-like particles.

2.
ACS Appl Bio Mater ; 5(12): 5513-5517, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36468916

RESUMO

A micro/nanoshaped system composed of alginate microspheres (microgels) decorated with silica oxide nanoparticles functionalized with nitroavidin was used for on-demand biomolecule release stimulated by different input signals. Enzymes preloaded in the microgels processed the applied signals producing either basic pH locally near the microspheres or generating H2O2 inside the hydrogel, or both simultaneously. The pH increase resulted in cleavage of the affinity bonds between nitroavidin and biotin, then releasing the latter. The H2O2 produced resulted in oxidative cleavage of cross-linking bonds in the alginate matrix, then opening pores and releasing a loaded model protein (bovine serum albumin).


Assuntos
Microgéis , Nanogéis , Peróxido de Hidrogênio , Alginatos/química , Biocatálise
3.
Phys Chem Chem Phys ; 24(33): 19687-19692, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35950592

RESUMO

Bovine serum albumin (BSA), used as a model protein, was immobilized on a buckypaper electrode by formation of covalent bonds with avidin/iminobiotin or nitroavidin/biotin complexes. pH-sensitive affinity interactions between avidin and iminobiotin or between nitroavidin and biotin allowed splitting of the affinity bonds upon pH variation, thus resulting in BSA release. Local (interfacial) pH was changed electrochemically. The pH was decreased upon electrochemical oxidation of ascorbate or increased upon electrochemical reduction of O2. The local pH change resulted in the weakening of the affinity complexes, resulting in BSA release from the avidin/iminobiotin or nitroavidin/biotin systems when the pH was decreased or increased, respectively. Importantly, protein release was only observed when the number of chemical bonds with the affinity systems was decreased by blocking a part (ca. 50%) of the binding sites in avidin/nitroavidin with iminobiotin/biotin molecules missing the possibility of attaching the protein. Without this blocking effect, multiple bond formation with the protein preserved BSA at the electrode surface, by not allowing its release upon electrochemical pH change.


Assuntos
Avidina , Biotina , Avidina/química , Biotina/análogos & derivados , Biotina/química , Eletrodos , Concentração de Íons de Hidrogênio
4.
Phys Chem Chem Phys ; 24(11): 6410-6414, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234792

RESUMO

Immobilized avidin-biotin complexes were used to release biotinylated (bio)molecules upon producing local pH changes near an electrode surface by electrochemical reactions. The nitro-avidin complex with biotin was dissociated by increasing local pH with electrochemical O2 reduction. The avidin complex with iminobiotin was split by decreasing local pH with electrochemical oxidation of ascorbate. Both studied systems were releasing molecule cargo species in response to small electrical potentials (-0.4 V or 0.2 V for the O2 reduction or ascorbate oxidation, respectively) applied on the modified electrodes.


Assuntos
Avidina , Biotina , Avidina/química , Biotina/química , Eletrodos , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...