Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999012

RESUMO

Two diphosphanes with variable-length ligands tested as nucleophiles to prepare isoporphyrin copolymers in the presence of ditolylporphyrin of zinc (ZnT2P) prevented the oxidation of the diphosphine ligand. This paper demonstrates the power of this approach and describes the photoelectrocatalytic properties. The obtained copolymers were characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy, atomic force micrograph (AFM), EQCM (Electrochemical Quartz Cristal Microbalance) and electrochemistry. Their impedance properties (EIS) were studied and their photovoltaic performances were also investigated by photocurrent transient measurements under visible light irradiation.

2.
Anal Chem ; 94(14): 5555-5565, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35343678

RESUMO

This study aims at sensing in situ reactive oxygen and nitrogen species (RONS) and specifically superoxide anion (O2•-) in aqueous buffer solutions exposed to cold atmospheric plasmas (CAPs). CAPs were generated by ionizing He gas shielded with variable N2/O2 mixtures. Thanks to ultramicroelectrodes protected against the high electric fields transported by the ionization waves of CAPs, the production of superoxide and several RONS was electrochemically directly detected in liquids during their plasma exposure. Complementarily, optical emissive spectroscopy (OES) was used to study the plasma phase composition and its correlation with the chemistry in the exposed liquid. The specific production of O2•-, a biologically reactive redox species, was analyzed by cyclic voltammetry (CV), in both alkaline (pH 11), where the species is fairly stable, and physiological (pH 7.4) conditions, where it is unstable. To understand its generation with respect to the plasma chemistry, we varied the shielding gas composition of CAPs to directly impact on the RONS composition at the plasma-liquid interface. We observed that the production and accumulation of RONS in liquids, including O2•-, depends on the plasma composition, with N2-based shieldings providing the highest superoxide concentrations (few 10s of micromolar at most) and of its derivatives (hundreds of micromolar). In situ spectroscopic and electrochemical analyses provide a high resolution kinetic and quantitative understanding of the interactions between CAPs and physiological solutions for biomedical applications.


Assuntos
Gases em Plasma , Nitrogênio/química , Oxigênio , Fosfatos , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Superóxidos
3.
Chem Commun (Camb) ; 57(12): 1482-1485, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33443265

RESUMO

The introduction of nanoparticles (MNPs) at the surface of cationic poly-porphyrin films, obtained by electrostatic interaction between the bis-porphyrin copolymer and the Preyssler type polyoxometalate P5W30@MNPs, enhances the photocurrent (up to 2.5-3 times greater as a function of the used nanoparticle).

4.
Anal Chem ; 91(13): 8002-8007, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31247715

RESUMO

Many investigations are dedicated to the detection and quantification of reactive oxygen and nitrogen species (RONS), particularly when generated in liquids exposed to cold atmospheric plasmas (CAPs). CAPs are partially ionized gases that can be obtained by applying a high electric field to a gas. A challenge is to get better insights on the plasma-liquid interactions in order to understand the induced effects on different targets (liquid, cells, tissues, etc.). As RONS are biochemically reactive, the difficulty lies in finding efficient methods to get both dynamic and quantitative data. Herein, we developed an innovative setup aimed at performing an in situ electrochemical monitoring of redox species generated by CAPs in a physiological buffer (PBS, pH 7.4). The challenge was to apply millivolt-potential variations and measure nanoampere Faradaic currents in the presence of ionization waves generated by micropulsed electric fields of some 10 kV·cm-1 amplitude and ampere-transient currents. This was fulfilled by using dedicated working ultramicroelectrodes (Pt-black UMEs) and protecting them, as well as the reference and counter electrodes, within insulated-earthed containers. In this condition, we succeeded in performing both cyclic voltammetry and chronoamperometry in situ, with a resolution equivalent to working in a static solution (subnanoampere currents). Thus, we monitored the accumulation over time of species (H2O2, NO2-) generated by CAPs in PBS and observed the mean dynamic of RONS chemistry during and after plasma exposition, particularly through the detection of a short-living species.

5.
Phys Chem Chem Phys ; 20(14): 9198-9210, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29560996

RESUMO

The understanding of plasma-liquid interactions is of major importance, not only in physical chemistry, chemical engineering and polymer science, but in biomedicine as well as to better control the biological processes induced on/in biological samples by Cold Atmospheric Plasmas (CAPs). Moreover, plasma-air interactions have to be particularly considered since these CAPs propagate in the ambient air. Herein, we developed a helium-based CAP setup equipped with a shielding-gas device, which allows the control of plasma-air interactions. Thanks to this device, we obtained specific diffuse CAPs, with the ability to propagate along several centimetres in the ambient air at atmospheric pressure. Optical Emission Spectroscopy (OES) measurements were performed on these CAPs during their interaction with a liquid medium (phosphate-buffered saline PBS 10 mM, pH 7.4) giving valuable information about the induced chemistry as a function of the shielding gas composition (variable O2/(O2 + N2) ratio). Several excited species were detected including N2+(First Negative System, FNS), N2(Second Positive System, SPS) and HO˙ radical. The ratios between nitrogen/oxygen excited species strongly depend on the O2/(O2 + N2) ratio. The liquid chemistry developed after CAP treatment was investigated by combining electrochemical and UV-visible absorption spectroscopy methods. We detected and quantified stable oxygen and nitrogen species (H2O2, NO2-, NO3-) along with Reactive Nitrogen Species (RNS) such as the peroxynitrite anion ONOO-. It appears that the RNS/ROS (Reactive Oxygen Species) ratio in the treated liquid depends also on the shielding gas composition. Eventually, the composition of the surrounding environment of CAPs seems to be crucial for the induced plasma chemistry and consequently, for the liquid chemistry. All these results demonstrate clearly that for physical, chemical and biomedical applications, which are usually achieved in ambient air environments, it is necessary to realize an effective control of plasma-air interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...