Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 58(7): 3335-3346, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683627

RESUMO

Millions of Americans experience pain daily. In 2017, opioid overdose claimed 64,000 lives increasing to 84,000 lives in 2020, resulting in a decrease in national life expectancy. Chronic opioid use results in dependency, drug tolerance, neuroadaptation, hyperalgesia, potential addictive behaviors, or Reward Deficiency Syndrome (RDS) caused by a hypodopaminergia. Evaluation of pain clinic patients with the Genetic Addiction Risk Score (GARS) test and the Addiction Severity Index (ASI- Media Version V) revealed that GARS scores equal to or greater than 4 and 7 alleles significantly predicted drug and alcohol severity, respectively. We utilized RT-PCR for SNP genotyping and multiplex PCR/capillary electrophoresis for fragment analysis of the role of eleven alleles in a ten-reward gene panel, reflecting the activity of brain reward circuitry in 121 chronic opioid users. The study consisted of 55 males and 66 females averaging ages 54 and 53 years of age, respectively. The patients included Caucasians, African Americans, Hispanics, and Asians. Inclusion criteria mandated that the Morphine Milligram Equivalent (MME) was 30-600 mg/day (males) and 20 to 180 mg/day (females) for treatment of chronic pain over 12 months. Ninety-six percent carried four or more risk alleles, and 73% carried seven or more risk alleles, suggesting a high predictive risk for opioid and alcohol dependence, respectively. These data indicate that chronic, legally prescribed opioid users attending a pain clinic possess high genetic risk for drug and alcohol addiction. Early identification of genetic risk, using the GARS test upon entry to treatment, may prevent iatrogenic induced opioid dependence.


Assuntos
Analgésicos Opioides/efeitos adversos , Dor Crônica/genética , Predisposição Genética para Doença/genética , Prescrição Inadequada/efeitos adversos , Transtornos Relacionados ao Uso de Opioides/genética , Gravidade do Paciente , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Analgésicos Opioides/administração & dosagem , Comportamento Aditivo/diagnóstico , Comportamento Aditivo/genética , Dor Crônica/diagnóstico , Dor Crônica/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Projetos Piloto , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
3.
Artigo em Inglês | MEDLINE | ID: mdl-31824737

RESUMO

In the face of the current Opioid crisis in America killing close to 800,000 people since 2004, we are proposing a novel approach to assist in at least attenuating these unwanted premature deaths. While we applaud the wonderful efforts of our governmental institutes and professional societies (NIDA, NIAAA, ASAM, ABAM ) in their extraordinary efforts in combating this continued dilemma, the current approach is failing, and other alternative approaches should at least be tested. These truths present a serious ethical dilemma to scientists, clinicians and counselors in the Reward Deficiency Syndrome (RDS) treatment community. It is important to realize that the current DSM-5 does not actually accurately display the natural brain reward process. The human brain has not been designed to carve out specific drugs like opioids, alcohol, nicotine, cocaine, benzodiazepines or cannabis and process addictions such as gambling as distinct endophenotypes. This is true in spite of natural ligands for cannabinoids, endorphins, or even benzodiazepines. The most accurate endophenotype is indeed reward dysfunction (e.g hypodopaminergic or hyperdopaminergic). With this mind, we are hereby proposing that the current Medication Assisted Treatment (i.e. 'MAT') expands to needed individuals as an initial "Band-Aid" to reduce harm avoidance, with the long-term goal of prophylaxis. So, to be clear, there may be other promising modalities other than MAT such as repetitive transcranial magnetic stimulation (rTMS), exercise and even new medications with positive allosteric modulators of GABA-A receptors, as well as the highly researched Genetic Addiction Risk Score (GARS) coupled with precision KB220Z. This will induce "dopamine homeostasis" to effectively rebalance and restore healthier brain function by promoting the cross talk between various brain regions (e.g. Nucleus accumbens, cingulate gyrus, hippocampus etc.) resulting in dopamine homeostasis. Our laudable goal is to not only save lives, but to redeem joy and improve the quality of life in the recovery community through scientifically sound natural non-addicting alternatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...