Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328079

RESUMO

Hydra vulgaris is an emerging model organism for neuroscience due to its small size, transparency, genetic tractability, and regenerative nervous system; however, fundamental properties of its sensorimotor behaviors remain unknown. Here, we use microfluidic devices combined with fluorescent calcium imaging and surgical resectioning to study how the diffuse nervous system coordinates Hydra's mechanosensory response. Mechanical stimuli cause animals to contract, and we find this response relies on at least two distinct networks of neurons in the oral and aboral regions of the animal. Different activity patterns arise in these networks depending on whether the animal is contracting spontaneously or contracting in response to mechanical stimulation. Together, these findings improve our understanding of how Hydra's diffuse nervous system coordinates sensorimotor behaviors. These insights help reveal how sensory information is processed in an animal with a diffuse, radially symmetric neural architecture unlike the dense, bilaterally symmetric nervous systems found in most model organisms.


Assuntos
Hydra/fisiologia , Mecanotransdução Celular/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Técnicas Analíticas Microfluídicas , Sistema Nervoso/metabolismo , Imagem Óptica
2.
iScience ; 24(6): 102490, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34095784

RESUMO

Many animals that lose neural tissue to injury or disease can maintain behavioral repertoires by regenerating new neurons or reorganizing existing neural circuits. However, most neuroscience small model organisms lack this high degree of neural plasticity. We show that Hydra vulgaris can maintain stable sensory-motor behaviors despite 2-fold changes in neuron count, due to naturally occurring size variation or surgical resection. Specifically, we find that both behavioral and neural responses to rapid temperature changes are maintained following these perturbations. We further describe possible mechanisms for the observed neural activity and argue that Hydra's radial symmetry may allow it to maintain stable behaviors when changes in the numbers of neurons do not selectively eliminate any specific neuronal cell type. These results suggest that Hydra provides a powerful model for studying how animals maintain stable sensory-motor responses within dynamic neural circuits and may lead to the development of general principles for injury-tolerant neural architectures.

3.
iScience ; 23(3): 100917, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32114383

RESUMO

Advances in microfabrication technologies and biomaterials have enabled a growing class of electronic devices that can stimulate and record bioelectronic signals. Many of these devices have been developed for humans or vertebrate animals, where miniaturization allows for implantation within the body. There are, however, another class of bioelectronic interfaces that exploit microfabrication and nanoelectronics to record signals from tiny, millimeter-sized organisms. In these cases, rather than implanting a device inside an animal, animals themselves are loaded in large numbers into bioelectronic devices for neural circuit and behavioral interrogation. These scalable interfaces provide platforms to develop new therapeutics as well as better understand basic principles of bioelectronic communication, neuroscience, and behavior. Here we review recent progress in these bioelectronic technologies and describe how they can complement on-chip optical, mechanical, and chemical interrogation methods to achieve high-throughput, multimodal studies of millimeter-sized small animals.

4.
ISME J ; 13(8): 2058-2067, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31015561

RESUMO

Understanding factors affecting the susceptibility of organisms to thermal stress is of enormous interest in light of our rapidly changing climate. When adaptation is limited, thermal acclimation and deacclimation abilities of organisms are critical for population persistence through a period of thermal stress. Holobionts (hosts plus associated symbionts) are key components of various ecosystems, such as coral reefs, yet the contributions of their two partners to holobiont thermal plasticity are poorly understood. Here, we tested thermal plasticity of the freshwater cnidarian Hydra viridissima (green hydra) using individual behavior and population responses. We found that algal presence initially reduced hydra thermal tolerance. Hydra with algae (symbiotic hydra) had comparable acclimation rates, deacclimation rates, and thermal tolerance after acclimation to those without algae (aposymbiotic hydra) but they had higher acclimation capacity. Acclimation of the host (hydra) and/or symbiont (algae) to elevated temperatures increased holobiont thermal tolerance and these effects persisted for multiple asexual generations. In addition, acclimated algae presence enhanced hydra fitness under prolonged sublethal thermal stress, especially when food was limited. Our study indicates while less intense but sublethal stress may favor symbiotic organisms by allowing them to acclimate, sudden large, potentially lethal fluctuations in climate stress likely favor aposymbiotic organisms. It also suggests that thermally stressed colonies of holobionts could disperse acclimated hosts and/or symbionts to other colonies, thereby reducing their vulnerability to climate change.


Assuntos
Aclimatação , Clorófitas/fisiologia , Cnidários/fisiologia , Hydra/fisiologia , Simbiose , Animais , Recifes de Corais , Ecossistema , Alimentos , Água Doce , Temperatura Alta , Estresse Fisiológico
5.
Lab Chip ; 18(17): 2523-2539, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29987278

RESUMO

The nervous system of the cnidarian Hydra vulgaris exhibits remarkable regenerative abilities. When cut in two, the bisected tissue reorganizes into fully behaving animals in approximately 48 hours. Furthermore, new animals can reform from aggregates of dissociated cells. Understanding how behaviors are coordinated by this highly plastic nervous system could reveal basic principles of neural circuit dynamics underlying behaviors. However, Hydra's deformable and contractile body makes it difficult to manipulate the local environment while recording neural activity. Here, we present the first microfluidic technologies capable of simultaneous electrical, chemical, and optical interrogation of these soft, deformable organisms. Specifically, we demonstrate devices that can immobilize Hydra for hours-long simultaneous electrical and optical recording, and chemical stimulation of behaviors revealing neural activity during muscle contraction. We further demonstrate quantitative locomotive and behavioral tracking made possible by confining the animal to quasi-two-dimensional micro-arenas. Together, these proof-of-concept devices show that microfluidics provide a platform for scalable, quantitative cnidarian neurobiology. The experiments enabled by this technology may help reveal how highly plastic networks of neurons provide robust control of animal behavior.


Assuntos
Comportamento Animal , Eletrofisiologia/instrumentação , Hydra/fisiologia , Dispositivos Lab-On-A-Chip , Imagem Molecular/instrumentação , Animais
6.
Nat Nanotechnol ; 12(7): 684-691, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28416816

RESUMO

Electrical measurements from large populations of animals would help reveal fundamental properties of the nervous system and neurological diseases. Small invertebrates are ideal for these large-scale studies; however, patch-clamp electrophysiology in microscopic animals typically requires invasive dissections and is low-throughput. To overcome these limitations, we present nano-SPEARs: suspended electrodes integrated into a scalable microfluidic device. Using this technology, we have made the first extracellular recordings of body-wall muscle electrophysiology inside an intact roundworm, Caenorhabditis elegans. We can also use nano-SPEARs to record from multiple animals in parallel and even from other species, such as Hydra littoralis. Furthermore, we use nano-SPEARs to establish the first electrophysiological phenotypes for C. elegans models for amyotrophic lateral sclerosis and Parkinson's disease, and show a partial rescue of the Parkinson's phenotype through drug treatment. These results demonstrate that nano-SPEARs provide the core technology for microchips that enable scalable, in vivo studies of neurobiology and neurological diseases.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Caenorhabditis elegans , Hydra , Dispositivos Lab-On-A-Chip , Animais , Modelos Animais de Doenças , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...