Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980565

RESUMO

The neurometabolic disorder known as biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare autosomal recessive condition linked to bi-allelic pathogenic mutations in the SLC19A3 gene. BTBGD is characterized by progressive encephalopathy, confusion, seizures, dysarthria, dystonia, and severe disabilities. Diagnosis is difficult due to the disease's rare nature and diverse clinical characteristics. The primary treatment for BTBGD at this time is thiamine and biotin supplementation, while its long-term effectiveness is still being investigated. In this study, we have generated two clones of induced pluripotent stem cells (iPSCs) from a 10-year-old female BTBGD patient carrying a homozygous mutation for the pathogenic variant in exon 5 of the SLC19A3 gene, c.1264A > G (p.Thr422Ala). We have confirmed the pluripotency of the generated iPS lines and successfully differentiated them to neural progenitors. Because our understanding of genotype-phenotype correlations in BTBGD is limited, the establishment of BTBGD-iPSC lines with a homozygous SLC19A3 mutation provides a valuable cellular model to explore the molecular mechanisms underlying SLC19A3-associated cellular dysfunction. This model holds potential for advancing the development of novel therapeutic strategies.

2.
Hum Cell ; 37(2): 502-510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110787

RESUMO

The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.


Assuntos
Epilepsias Mioclônicas , Células-Tronco Pluripotentes Induzidas , Humanos , Arábia Saudita , Mutação/genética , Epilepsias Mioclônicas/genética , Heterozigoto , Canal de Sódio Disparado por Voltagem NAV1.7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...