Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12775, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834739

RESUMO

This paper presents an innovative control scheme designed to significantly enhance the power factor of AC/DC boost rectifiers by integrating an adaptive neuro-fuzzy inference system (ANFIS) with predictive current control. The innovative control strategy addresses key challenges in power quality and energy efficiency, demonstrating exceptional performance under diverse operating conditions. Through rigorous simulation, the proposed system achieves precise input current shaping, resulting in a remarkably low total harmonic distortion (THD) of 3.5%, which is well below the IEEE-519 standard threshold of 5%. Moreover, the power factor reaches an outstanding 0.990, indicating highly efficient energy utilization and near-unity power factor operation. To validate the theoretical findings, a 500 W laboratory prototype was implemented using the dSPACE ds1104 digital controller. Steady-state analysis reveals sinusoidal input currents with minimal THD and a power factor approaching unity, thereby enhancing grid stability and energy efficiency. Transient response tests further demonstrate the system's robustness against load and voltage fluctuations, maintaining output voltage stability within an 18 V overshoot and a 20 V undershoot during load changes, and achieving rapid response times as low as 0.2 s. Comparative evaluations against conventional methods underscore the superiority of the proposed control strategy in terms of both performance and implementation simplicity. By harnessing the strengths of ANFIS-based voltage regulation and predictive current control, this scheme offers a robust solution to power quality issues in AC/DC boost rectifiers, promising substantial energy savings and improved grid stability. The results affirm the potential of the proposed system to set new benchmarks in power factor correction technology.

2.
Sci Rep ; 14(1): 13946, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886499

RESUMO

This study looks into how to make proton exchange membrane (PEM) fuel cells work more efficiently in environments that change over time using new Maximum Power Point Tracking (MPPT) methods. We evaluate the efficacy of Flying Squirrel Search Optimization (FSSO) and Cuckoo Search (CS) algorithms in adapting to varying conditions, including fluctuations in pressure and temperature. Through meticulous simulations and analyses, the study explores the collaborative integration of these techniques with boost converters to enhance reliability and productivity. It was found that FSSO consistently works better than CS, achieving an average increase of 12.5% in power extraction from PEM fuel cells in a variety of operational situations. Additionally, FSSO exhibits superior adaptability and convergence speed, achieving the maximum power point (MPP) 25% faster than CS. These findings underscore the substantial potential of FSSO as a robust and efficient MPPT method for optimizing PEM fuel cell systems. The study contributes quantitative insights into advancing green energy solutions and suggests avenues for future exploration of hybrid optimization methods.

3.
Sci Rep ; 14(1): 7996, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580735

RESUMO

This article offers a PV-PEMFC-batteries energy management strategy (EMS) that aims to meet the following goals: keep the DC link steady at the standard value, increase battery lifespan, and meet power demand. The suggested multi-source renewable system (MSRS) is made to meet load demand while using extra power to fill batteries. The major energy source for the MSRS is photovoltaic, and fuzzy logic MPPT is used to guarantee that the PV operates at optimal efficiency under a variety of irradiation conditions. The suggested state machine control consists of 15 steps. It prioritizes the proton exchange membrane fuel cell (PEMFC) as a secondary source for charging the battery when power is abundant and the state of charge (SOC) is low. The MSRS is made feasible by meticulously coordinating control and power management. The MSRS is made achievable by carefully orchestrated control and electricity management. The efficacy of the proposed system was evaluated under different solar irradiance and load conditions. The study demonstrates that implementing the SMC led to an average improvement of 2.3% in the overall efficiency of the system when compared to conventional control techniques. The maximum efficiency was observed when the system was operating under high load conditions, specifically when the state of charge (SOC) was greater than the maximum state of charge (SOCmax). The average efficiency achieved under these conditions was 97.2%. In addition, the MSRS successfully maintained power supply to the load for long durations, achieving an average sustained power of 96.5% over a period of 7.5 s. The validity of the modeling and management techniques mentioned in this study are confirmed by simulation results utilizing the MATLAB/Simulink (version: 2016, link: https://in.mathworks.com/products/simulink.html ) software tools. These findings show that the proposed SMC is effective at managing energy resources in MSRS, resulting in improved system efficiency and reliability.

4.
Sci Rep ; 14(1): 6827, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514832

RESUMO

Recently, the integration of renewable energy sources, specifically photovoltaic (PV) systems, into power networks has grown in significance for sustainable energy generation. Researchers have investigated different control algorithms for maximum power point tracking (MPPT) to enhance the efficiency of PV systems. This article presents an innovative method to address the problem of maximum power point tracking in photovoltaic systems amidst swiftly changing weather conditions. MPPT techniques supply maximum power to the load during irradiance fluctuations and ambient temperatures. A novel optimal model reference adaptive controller is developed and designed based on the MIT rule to seek global maximum power without ripples rapidly. The suggested controller is also optimized through two popular meta-heuristic algorithms: The genetic algorithm (GA) and the whale optimization algorithm (WOA). These meta-heuristic approaches have been exploited to overcome the difficulty of selecting the adaptation gain of the MRAC controller. The reference voltage for MPPT is generated in the study through an adaptive neuro-fuzzy inference system. The suggested controller's performance is tested via MATLAB/Simulink software under varying temperature and radiation circumstances. Simulation is carried out using a Soltech 1sth-215-p module coupled to a boost converter, which powers a resistive load. Furthermore, to emphasize the recommended algorithm's performance, a comparative study was done between the optimal MRAC using GA and WOA and the conventional incremental conductance (INC) method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...