Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 12: 3525-3533, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425454

RESUMO

BACKGROUND: Several vitamins, including C, E, and B12, have been recognized as antioxidants and have shown hepatoprotective effects against the hepatotoxicity caused by acetaminophen (APAP) overdose. The current investigation aims to study the effect of these vitamins and their combination in protecting the liver from APAP hepatotoxicity in rats. MATERIALS AND METHODS: An in vitro model of freshly isolated rat hepatocytes was utilized for assessing hepatocyte mitochondrial activity conducted by cell proliferation assay (MTT). The isolated hepatocytes were treated with vitamin C, vitamin E, vitamin B12 and their combination, with and without further addition of toxic concentrations of APAP. In addition, an in vivo experiment was carried out on Sprague Dawley rats treated intraperitoneally for 8 days with emulsions of the vitamins or their combination prior to injecting them with APAP. RESULTS: In vitro results showed that vitamins C and B and the combination preparation significantly increased the percentage of hepatocyte mitochondrial activity, both with and without the addition of APAP (P<0.01). The mitochondrial activity in the isolated cultured hepatocytes was further enhanced with APAP addition. In vivo, the vitamins and their combination effectively reduced APAP-induced serum liver enzymes levels, namely ALT, AST, and ALP, and also attenuated oxidative stress and lipids peroxidation confirmed by the results of glutathione, superoxide dismutase, and maloondialdehyde. CONCLUSION: Pretreatment with vitamins C, E, B12, or their combination was found to be beneficial in preventing in vivo hepatic oxidative stress induced by APAP overdose. Vitamin C on its own showed superior protection against APAP-induced liver injury in rats compared to the other vitamins. The proliferation of APAP-intoxicated liver cells in vitro was highest when protected with the vitamins' combination.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Vitamina B 12/farmacologia , Vitamina E/farmacologia , Acetaminofen , Animais , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Vitamina B 12/administração & dosagem , Vitamina E/administração & dosagem
2.
Molecules ; 21(6)2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27271577

RESUMO

Eriobotrya japonica (Thunb.) Lindl. (Loquat) (EJ) has been used as a medicinal plant to treat chronic bronchitis, coughs, phlegm, high fever and gastro-enteric disorders. Since the traditional use of EJ is related to modulating inflammation processes, our earlier studies on EJ leaves were performed on the water extract to investigate specific cytokines' modulation. These earlier studies, however, have shown that EJ leaf water extract (WE) and the water phase (WP) induce cytokines' production in in vitro and in vivo models. Therefore, the aim of this study was to specify the group(s) of compounds in EJ leaves that have this immunomodulatory activity and their mechanism of action. WE was obtained from boiling the leaves followed by butanol extraction, yielding a butanol-water phase (WP). WP was then subjected to methanol:acetone fractionation, yielding upper (MAU) and lower (MAL) phases. For further fractionation, MAU was subjected to column chromatography followed by elution with ethanol:water (EW), methanol:ethanol (ME) and, lastly, acetone:water (AW), respectively, to reveal three sub-fractions; MAU-EW, MAU-ME and MAU-AW. MAU-AW significantly increased IFN-γ production from unstimulated and stimulated mouse spleen cells, as well as CD3+ T cells and natural killer cells. Furthermore, the fold increase of IFN-γ production by MAU-AW was concentration dependent, higher than the parent extract or any of the other sub-fractions, and such an IFN-γ increase was reversed by two JAK-STAT inhibitors. In addition, MALDI-TOF-MS analysis of the extracts and sub-fractions showed compounds with molecular weights of >500 Daltons. The MAU-AW sub-fraction contained more polar compounds, such as flavonol and caffeic glycosides. In conclusion, these polar compounds in the EJ extract are responsible for inducing IFN-γ production. Further chemical elucidation is warranted to lead to a specific IFN-γ inducer and an immunomodulator in polarizing immune cells and balancing immune responses in certain diseases.


Assuntos
Eriobotrya/química , Fatores Imunológicos/administração & dosagem , Células Matadoras Naturais/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Cromatografia , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/isolamento & purificação , Glicosídeos/administração & dosagem , Glicosídeos/química , Glicosídeos/isolamento & purificação , Fatores Imunológicos/química , Interferon gama/biossíntese , Janus Quinases/biossíntese , Células Matadoras Naturais/imunologia , Camundongos , Extratos Vegetais/química , Folhas de Planta/química , Fatores de Transcrição STAT/biossíntese , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/imunologia , Água/química
3.
Stress Health ; 32(4): 435-440, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26680108

RESUMO

Anxiety and stress are related to physiological changes in humans. Accumulating evidence suggests a cross-talk between psychiatric disorders and oxidative stress. The objective of this study was to compare oxidative stress and defensive antioxidant biomarkers in a group of refugees with acute anxiety and stress with a group of local Jordanians. The Hamilton Anxiety Rating Scale (HAM-A) and the Perceived Stress Scale (PSS) Arabic version were used to assess anxiety and stress respectively. Salivary nitric oxide concentration, glucose-6-phosphate dehydrogenase (G6PD) activity and total salivary protein were compared. As expected, refugees showed higher anxiety and stress scores compared with Jordanians. Also, we report a significant increase in salivary nitric oxide and G6PD activity in the refugee group while total protein concentration did not vary between the two groups. This is the first study that demonstrates an increase in nitric oxide and G6PD activity in the saliva of refugees, thus highlighting their potential role as possible biomarkers in anxiety and stress disorders. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Ansiedade/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Refugiados , Estresse Psicológico/metabolismo , Adulto , Ansiedade/fisiopatologia , Estudos Transversais , Feminino , Humanos , Iraque/etnologia , Jordânia/etnologia , Masculino , Saliva , Estresse Psicológico/fisiopatologia
4.
Onco Targets Ther ; 7: 193-201, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24532971

RESUMO

BACKGROUND: Dichloroacetate (DCA) is one of the new, promising anticancer drugs. DCA restores normal mitochondrial function and enables cancer cells to undergo apoptosis. In addition, DCA was found to modulate certain signaling pathways involving some transcription factors. The latter encouraged us to study DCA immunomodulatory activity on cytokines and their association with increasing DCA cancer cell cytotoxicity. METHODS AND RESULTS: Cell viability assay was used to determine the effect of different concentrations of DCA on the survival of 3-methylcholanthrene (MCA) fibrosarcoma cell line. DCA decreased the percent survival of MCA fibrosarcoma in a dose-dependent manner (P<0.01). Furthermore, this percent survival was further reduced when MCA fibrosarcoma cells were cocultured with mouse splenocytes. The latter was observed at 10 mM DCA (P<0.01), and the inhibitory concentration at 50% dropped from 23 mM to 15.6 mM DCA (P<0.05). In addition, DCA significantly enhanced interferon (IFN)-γ but not interleukin (IL)-17 production levels in unstimulated and stimulated mouse spleen cells. To investigate the mechanism of DCA on IFN-γ production, DCA cytokine modulatory effect was tested on unstimulated macrophages, T-cells, and natural killer cells. DCA significantly increased IL-12 production from macrophages but did not modulate the production of IFN-γ from either T-cells or natural killer cells. Moreover, the DCA-enhancing effect on IFN-γ production was reversed by anti-IL-12 antibody. Also, the DCA cytokine modulatory effect was tested in vivo after inducing mouse skin inflammation using phorbol 12-myristate 13-acetate (PMA). DCA restored PMA-lowered IFN-γ and IL-12 levels and normalized PMA-increased transforming growth factor-ß level, but it inhibited IL-10 levels even further (P<0.05). CONCLUSION: DCA has immunomodulatory activity, mainly via activation of the IL-12-IFN-γ pathway and is able to modulate cytokines toward T helper 1 lymphocyte function. These DCA immunomodulatory effects are promising and further investigations are required to develop protocols for its use in cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...