Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 640: 123019, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37149114

RESUMO

Liquid crystalline nanoparticles (LCNs) are an attractive drugs topical delivery system due to the great internal ordering, wide interfacial area and structural similarities with the skin. In this work, LCNs were designed to encapsulate triptolide (TP) and to complex on its surface small interfering RNAs (siRNA) targeting TNF-α and IL-6, aiming at topical co-delivery and regulating multi-targets in psoriasis. These multifunctional LCNs showed appropriate physicochemical properties for topical application, such as a mean size of 150 nm, low polydispersion, TP encapsulation greater than 90% and efficient complexation with siRNA. The internal reverse hexagonal mesostructure of LCNs was confirmed by SAXS while their morphology was assessed by cryo-TEM. In vitro permeation studies revealed an increase of more than 20-fold in the distribution of TP through the porcine epidermis/dermis was achieved after the application of LCN-TP or LCN TP in hydrogel. In cell culture, LCNs showed good compatibility and rapid internalization, which was attributed to macropinocytosis and caveolin-mediated endocytosis. Anti-inflammatory potential of multifunctional LCNs was assessed by reducing of TNF-α, IL-6, IL-1ß and TGF-ß1 levels in LPS-stimulated macrophages. These results support the hypothesis that the co-delivery of TP and siRNAs by LCNs may be a new strategy for psoriasis topical therapy.


Assuntos
Nanopartículas , Psoríase , Suínos , Animais , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa , Interleucina-6 , Espalhamento a Baixo Ângulo , Difração de Raios X , Psoríase/tratamento farmacológico , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...