Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 84: 153450, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33611212

RESUMO

BACKGROUND: Cardiovascular diseases are caused by multitudes of stress factors like hypertension and their outcomes are associated with high mortality and morbidity worldwide. Nerolidol, a naturally occurring sesquiterpene found in several plant species, embodies various pharmacological benefits against numerous health disorders. However, their effects on hypertension induced cardiac complications are not completely understood. PURPOSE: The present study is to elucidate the efficacy of nerolidol against hypertension related cardiac hypertrophy in spontaneously hypertensive rats (SHRs). STUDY DESIGN: For preliminary in vitro studies, H9c2 cardiomyoblasts cells were challenged with 200 nM Angiotensin-II (AngII) for 12 h and were then treated with nerolidol for 24 h. The hypertrophic effect in H9c2 cells were analyzed by actin staining and the modulations in hypertrophic protein markers and mediators were determined by Western blotting analysis. For in vivo experiments, sixteen week-old male Wistar Kyoto (WKY) and SHRs were segregated into five groups (n = 9): Control WKY, hypertensive SHRs, SHRs with low dose (75 mg/kg b.w/day) nerolidol, SHRs with high dose (150 mg/kg b.w/day) nerolidol and SHR rats treated with an anti-hypertensive drug captopril (50 mg/kg b.w/day). Nerolidol treatment was given orally for 8 weeks and were analysed through Echocardiography. After euthanasia, hematoxylin and eosin staining, Immunohistochemical analysis and Western blotting was performed on left ventricle tissue. RESULTS: Western blotting analysis revealed that nerolidol significantly attenuates AngII induced expression of hypertrophic markers ANP and BNP in H9c2 cardiomyoblasts. In addition, actin staining further ascertained the potential of nerolidol to ameliorate AngII induced cardiac hypertrophy. Moreover, nerolidol administration suppressed the hypertrophic signalling mediators like calcineurin, GATA4, Mel-18, HSF-2 and IGFIIR in a dose-dependent fashion. In silico studies also ascertained the role of Mel-18 in the ameliorative effects of nerolidol. Further, these intriguing in vitro results were further confirmed in in vivo SHR model. Oral neraolidol in SHRs efficiently reduced blood pressure and ameliorated hypertension induced cardiac hypertrophic effects by effectively reducing the levels of proteins involved in cardiac MeL-18-HSF2-IGF-IIR signalling. CONCLUSION: Collectively, the data reveals that the cardioprotective effect of nerolidol against hypertension induced hypertrophy involves reduction in blood pressure and regulation of the cardiac Mel-18-IGFIIR signalling cascade.


Assuntos
Anti-Hipertensivos/uso terapêutico , Cardiomegalia/tratamento farmacológico , Hipertensão/tratamento farmacológico , Complexo Repressor Polycomb 1/metabolismo , Receptor IGF Tipo 2/metabolismo , Sesquiterpenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sesquiterpenos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Food Chem Toxicol ; 147: 111837, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33212213

RESUMO

Toll-like receptor 4 (TLR4) is an important mediator of hypertension and AngII induced cardiac inflammation and remodelling. In this study, the potential of nerolidol to ameliorate hypertension induced cardiac injuries and the underlying mechanism of action was explored by using in vitro and in vivo models. The in vitro analysis was performed on AngII challenged H9c2 cells and their ability to overcome cardiac inflammation and cardiac remodelling effects was determined by evaluating TLR4/NF-κB signalling cascade using Western blot analysis and immunofluorescence. The results were further ascertained using in vivo experiments. Eighteen week old male rats were randomly allocated into different groups i.e. Wistar Kyoto (WKY) rats, hypertensive SHRs, SHRs treated with a low-dose (75 mg/kg b.w) and high-dose of nerolidol (150 mg/kg b.w) and SHRs treated with captopril (50 mg/kg b.w) through oral gauge and finally analysed through echocardiography, histopathological techniques and molecular analysis. The results show that nerilodol target TLR4/NF-κB signalling and thereby attenuate hypertension associated inflammation and oxidative stress thereby provides effective cardioprotection. Echocardiography analysis showed that nerolidol improved cardiac functional characteristics including Ejection Fraction and Fractional Shortening in the SHRs. Collectively, the data of the study demonstrates nerolidol as a cardio-protective agent against hypertension induced cardiac remodelling.


Assuntos
Cardiopatias/prevenção & controle , Inflamação/prevenção & controle , NF-kappa B/metabolismo , Sesquiterpenos/farmacologia , Receptor 4 Toll-Like/metabolismo , Angiotensina II/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Cardiopatias/metabolismo , Masculino , Modelos Moleculares , Estrutura Molecular , NF-kappa B/genética , Conformação Proteica , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética
3.
J Cell Physiol ; 235(4): 3539-3547, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584202

RESUMO

Cardiac hypertrophy is a common phenomenon observed in progressive heart disease associated with heart failure. Insulin-like growth factor receptor II (IGF-IIR) has been much implicated in myocardial hypertrophy. Our previous studies have found that increased activities of signaling mediators, such as calcium/calmodulin-dependent protein kinase II (CaMKII) and calcineurin induces pathological hypertrophy. Given the critical roles played by CaMKII and calcineurin signaling in the progression of maladaptive hypertrophy, we anticipated that inhibition of CaMKII and calcineurin signaling may attenuate IGF-IIR-induced cardiac hypertrophy. The current study, therefore, investigated the effects of IGF-IIR activation on the CaMKII and calcineurin signaling and whether the combinatorial inhibition of the CaMKIIδ and calcineurin signaling could ameliorate IGF-IIR-induced pathological hypertrophy. In the present study, we induced IGF-IIR through the cardiomyocyte-specific transduction of IGFIIY27L via adeno-associated virus 2 (AAV2) to evaluate its effects on cardiac hypertrophy. Interestingly, it was observed that the activation of IGF-IIR signaling through IGFIIY27L induces significant hypertrophy of the myocardium and increased cardiac apoptosis and fibrosis. Moreover, we found that Leu27 IGF-II significantly induced calcineurin and CaMKII expression. Furthermore and importantly, the combinatorial treatment with CaMKII and calcineurin inhibitors significantly alleviates IGF-IIR-induced hypertrophic responses. Thus, it could be envisaged that the inhibition of IGF-IIR may serve as a promising candidate for attenuating maladaptive hypertrophy. Both calcineurin and CaMKII could be valuable targets for developing treatment strategies against hypertension-induced cardiomyopathies.


Assuntos
Calcineurina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomegalia/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Receptor IGF Tipo 2/genética , Animais , Apoptose/genética , Calcineurina/efeitos dos fármacos , Inibidores de Calcineurina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cardiomegalia/genética , Cardiomegalia/patologia , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/patologia , Fator de Crescimento Insulin-Like II/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos
4.
J Cell Physiol ; 234(11): 20128-20138, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30980393

RESUMO

Carboxyl-terminus of Hsc70 interacting protein (CHIP) is a chaperone-dependent E3-ubiquitin ligase with important function in protein quality control system. In the current research endeavor, we have investigated the putative role of CHIP in lipopolysaccharides (LPS)-induced cardiomyopathies. Basically, H9c2 cardiomyoblasts were transfected with CHIP for 24 hr, and thereafter, treated with LPS for 12 hr. Concomitantly, western blot analysis, actin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and coimmunoprecipitation studies were performed to investigate the underlying intricacies. Interestingly, western blot analysis revealed that the expression of hypertrophy and apoptosis-related proteins were considerably reduced following overexpression of CHIP. Moreover, Actin staining and TUNEL assay further ascertained the attenuation of cardiac hypertrophy and apoptosis following overexpression of CHIP respectively. These aspects instigate the role of CHIP in attenuation of LPS-induced cardiomyopathies. Additionally and importantly, co-immunoprecipitation and western blot studies revealed that CHIP plausibly promotes degradation of nuclear factor of activated T cells 3 (NFATc3) through ubiquitin-proteasomal pathway. Taken together, our study reveals that CHIP attenuates LPS-induced cardiac hypertrophy and apoptosis perhaps by promoting NFATc3 proteasomal degradation.


Assuntos
Apoptose/fisiologia , Cardiomegalia/metabolismo , Fatores de Transcrição NFATC/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomiopatias/metabolismo , Linhagem Celular , Marcação In Situ das Extremidades Cortadas/métodos , Lipopolissacarídeos/farmacologia , Chaperonas Moleculares/metabolismo , Ratos , Ubiquitina/metabolismo , Ubiquitinação/fisiologia
5.
Front Oncol ; 9: 1309, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921618

RESUMO

Taiwanin E is a bioactive compound extracted from Taiwania cryptomerioides Hayata. In this research endeavor, we studied the anti-cancer effect of Taiwanin E against arecoline and 4-nitroquinoline-1-oxide-induced oral squamous cancer cells (OSCC), and elucidated the underlying intricacies. OSCC were treated with Taiwanin E and analyzed through MTT assay, Flow cytometry, TUNEL assay, and Western blotting for their efficacy against OSCC. Interestingly, it was found that Taiwanin E significantly attenuated the cell viability of oral cancer cells (T28); however, no significant cytotoxic effects were found for normal oral cells (N28). Further, Flow cytometry analysis showed that Taiwanin E induced G1cell cycle arrest in T28 oral cancer cells and Western blot analysis suggested that Taiwanin E considerably downregulated cell cycle regulatory proteins and activated p53, p21, and p27 proteins. Further, TUNEL and Western blot studies instigated that it induced cellular apoptosis and attenuated the p-PI3K/p-Akt survival mechanism in T28 oral cancer cells seemingly through modulation of the ERK signaling cascade. Collectively, the present study highlights the prospective therapeutic efficacy of Taiwanin E against arecoline and 4-nitroquinoline-1-oxide-induced oral cancer.

6.
Environ Toxicol ; 33(11): 1113-1122, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29974613

RESUMO

Eriobotrya japonica (EJ) is a traditional Chinese plant with high medicinal value. EJ extracts are reported to exhibit antioxidant and anti-inflammatory biological attributes. The current study aims to evaluate the prospective efficacy of E. japonica leave extract (EJLE) against Angiotensin-II induced cardiac hypertrophy in H9c2 cardiomyoblast and in spontaneously hypertensive rats (SHRs). For the in vitro studies, Angiotensin-II pretreated H9c2 cells were treated with EJLE and analyzed through Western blotting and rhodamine phalloidin staining for their cardio-protective attributes. In the in vivo studies, 12-week-old SHRs were randomly divided into groups: SHRs supplemented with EJLE, control SHR group supplemented with PBS; in addition, a control group of Wistar-Kyoto rats (WKY) was also employed. All rats were supplemented twice a week for 8 week time interval. Finally, echocardiography, morphological, histology, and Western blot analysis were performed to assess their role against cardiac hypertrophy. Interestingly, we could observe that supplementation of EJLE could rescue Ang-II induced cardiac hypertrophy as evident through Western blot, rhodamine phalloidin staining, and Hematoxylin-Eosin staining. Notably, morphological and echocardiography data provided further supports for their ability to ameliorate cardiac characteristics. Cumulatively, the results clearly suggests that supplementation of EJLE promotes cardio-protective effects through amelioration of cardiac hypertrophy in vitro and in vivo.


Assuntos
Cardiomegalia/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Eriobotrya/química , Hipertensão/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Angiotensina II/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Ecocardiografia , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Hipertensão/complicações , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , Miócitos Cardíacos/patologia , Fitoterapia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
7.
Int J Mol Sci ; 19(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857545

RESUMO

Myocardial apoptosis and fibrosis represent important contributing factors for development of hypertension-induced heart failure. The present study aims to investigate the potential effects of Eriobotrya japonica leaf extract (EJLE) against hypertension-induced cardiac apoptosis and fibrosis in spontaneously hypertensive rats (SHRs). Twelve-week-old male rats were randomly divided into four different groups; control Wistar Kyoto (WKY) rats, hypertensive SHR rats, SHR rats treated with a low dose (100 mg/kg body weight) of EJLE and SHR rats treated with a high dose (300 mg/kg body weight) of EJLE. Animals were acclimatized for 4 weeks and thereafter were gastric fed for 8 weeks with two doses of EJLE per week. The rats were then euthanized following cardiac functional analysis by echocardiography. The cardiac tissue sections were examined by Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate (dUTP) Nick End-Labeling (TUNEL) assay, histological staining and Western blotting to assess the cardio-protective effects of EJ in SHR animals. Echocardiographic measurements provided convincing evidence to support the ability of EJ to ameliorate crucial cardiac functional characteristics. Furthermore, our results reveal that supplementation of EJLE effectively attenuated cardiac apoptosis and fibrosis and also enhanced cell survival in hypertensive SHR hearts. Thus, the present study concludes that EJLE potentially provides cardio-protective effects against hypertension-induced cardiac apoptosis and fibrosis in SHR animals.


Assuntos
Anti-Hipertensivos/farmacologia , Apoptose/efeitos dos fármacos , Eriobotrya/química , Exsudatos de Plantas/farmacologia , Animais , Biomarcadores , Sobrevivência Celular , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/etiologia , Fibrose/patologia , Testes de Função Cardíaca , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais
8.
Dig Dis ; 33(5): 675-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26398762

RESUMO

Liver cancer results in enormous human toll worldwide. Over the years, various chemotherapeutic entities have been employed for treatment of advanced HCC; however, as of yet none embody attributes to improve overall survival. Following rapid advancement in nanotechnology, it is envisage that nanoscale systems may emerge as intriguing platforms to improve chemotherapeutic strategies against various cancers including liver cancer; with better insight in the understanding of pathophysiology of liver cancer and material science, the field of nanotechnology may bring newer hope to liver cancer treatment. Reckoning with these, we detailed the arsenal of nanoformulations that are in various stages of clinical development/ preclinical settings for the treatment of liver cancer together with providing a glimpse of the attributes of nanotechnology in revolutionizing the status of chemotherapeutic modalities.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/administração & dosagem , Doxorrubicina/administração & dosagem , Humanos
9.
Curr Gene Ther ; 15(2): 201-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25612905

RESUMO

RNAi based therapeutics hold s great promises to be an efficient strategy of the anti-gene realm in context of its therapeutic applications; however, despite significant potentials, its full efficacy cannot be realized in real sense owing to various confronts that plague its advancement. Efforts need to be driven for the development of specific and efficacious strategies to subdue some of their crucial constraints towards successes in clinics. This article will present the major impediments that encumber successful translation of siRNA concept into reality and the ongoing research endeavours to get through those stumbling blocks along with their inadequacies.


Assuntos
Terapia Genética , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Técnicas de Transferência de Genes , Humanos , RNA Interferente Pequeno/genética
11.
Biomed Res Int ; 2013: 121684, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24171157

RESUMO

The ease to culture, moderately less safety constraints in handling, and above all, hurdle free induction of an anticipated infection in mouse rendered Listeria monocytogenes the rank of a model organism for studying a variety of host immune responses. Listeria monocytogenes being an intracellular pathogen evokes potent CD8 T cell response during which CD8 T cells pass through a massive expansion phase. This is generally followed by contraction phase wherein majority of activated cells undergo apoptosis leaving behind a population of memory CD8 T cells that has potential to confer enhanced protection upon reencounter with the same pathogen. Functional attributes of various cytokines, transcription factors, receptors, adaptors, and effectors pertaining to the generation of robust memory T cell response have begun to be unravelled for better understanding of memory and opening avenues to create superior vaccine strategies. This review is an attempt to unveil related discoveries along with updating recent advances on this issue.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Listeria monocytogenes/imunologia , Animais , Linfócitos B/imunologia , Vacinas Bacterianas/imunologia , Humanos
12.
Front Immunol ; 4: 254, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986763

RESUMO

Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct "homing codes" (adhesion molecules and chemokine receptors) during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A) and sunlight (vitamin D3) prime dendritic cells, imprinting them to play centre stage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue-tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues along with giving an overview of tissue tropism in B cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...