Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 7(4): 046111, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941766

RESUMO

Wearable thermoregulatory technologies have attracted widespread attention because of their potential for impacting individual physiological comfort and for reducing building energy consumption. Within this context, the study of materials and systems that can merge the advantageous characteristics of both active and passive operating modes has proven particularly attractive. Accordingly, our laboratory has drawn inspiration from the appearance-changing skin of Loliginidae (inshore squids) for the introduction of a unique class of dynamic thermoregulatory composite materials with outstanding figures of merit. Herein, we demonstrate a straightforward approach for experimentally controlling and computationally predicting the adaptive infrared properties of such bioinspired composites, thereby enabling the development and validation of robust structure-function relationships for the composites. Our findings may help unlock the potential of not only the described materials but also comparable systems for applications as varied as thermoregulatory wearables, food packaging, infrared camouflage, soft robotics, and biomedical sensing.

2.
Polymers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890632

RESUMO

Many researchers and scientists have contributed significantly to provide structural and molecular characterizations of biochemical interactions using microscopic techniques in the recent decade, as these biochemical interactions play a crucial role in the production of diverse biomaterials and the organization of biological systems. The properties, activities, and functionalities of the biomaterials and biological systems need to be identified and modified for different purposes in both the material and life sciences. The present study aimed to review the advantages and disadvantages of three main branches of microscopy techniques (optical microscopy, electron microscopy, and scanning probe microscopy) developed for the characterization of these interactions. First, we explain the basic concepts of microscopy and then the breadth of their applicability to different fields of research. This work could be useful for future research works on biochemical self-assembly, biochemical aggregation and localization, biological functionalities, cell viability, live-cell imaging, material stability, and membrane permeability, among others. This understanding is of high importance in rapid, inexpensive, and accurate analysis of biochemical interactions.

3.
Biosens Bioelectron ; 175: 112881, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33308961

RESUMO

Selective fabrication of metallic nanostructures at the spotting area is required to increase the signal-to-background noise ratio (SBR) of the metal-enhanced fluorescence (MEF) substrate. As a simple and cost-effective fabrication method for MEF substrate with high SBR, a glancing angle deposition (GLAD) process of Ag material on the UV-imprinted micropost array (50 µm in height, 300 µm in diameter, and 600 µm in pitch) was proposed to selectively fabricate Ag nanorods on the top of micropost structure (spotting area). Ag nanorod formation at the bottom of the micropost decreased as the deposition angle in Ag GLAD increased. A deposition angle of 89° and deposition thickness of 500 nm were selected as the optimum GLAD conditions to maximize the SBR. The optimum Ag nanorods on micropost array (AgNMPA) MEF substrate provided 71-fold fluorescence signal enhancement and 25-times higher SBR than the bare glass substrate. It also provided 7-times higher SBR than the Ag nanorod MEF substrate, which has a similar Ag nanorod structure but is not selectively formed. The detection limit of AgNMPA was 16- and 4-times lower than that of the amine-functionalized glass substrate and commercial epoxy slide, respectively. Although the fluorescence signal of AgNMPA was similar to that of Ag nanorod substrate, the detection limit was 2-times lower because of the low signal standard deviation caused by the low background noise and clear spot shape.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanotubos , Prata
4.
Polymers (Basel) ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375587

RESUMO

A simple and cost-effective method is proposed herein for a plasmonic nanoantenna array (PNAA) for the fabrication of metal-enhanced fluorescence (MEF) substrates in which fluorophores interact with the enhanced electromagnetic field generated by a localized surface plasmon to provide a higher fluorescence signal. The PNAA is fabricated by the deposition of a silver (Ag) layer on an ultraviolet (UV) nanoimprinted nanodot array with a pitch of 400 nm, diameter of 200 nm, and height of 100 nm. During deposition, raised Ag nanodisks and a lower Ag layer are, respectively, formed on the top and bottom of the imprinted nanodot array, and the gap between these Ag layers acts as a plasmonic nanoantenna. Since the thickness of the gap within the PNAA is influenced by the thickness of Ag deposition, the effects of the latter upon the geometrical properties of the fabricated PNAA are examined, and the electromagnetic field intensity distributions of PNAAs with various Ag thicknesses are simulated. Finally, the fluorescence enhancement factor (FEF) of the fabricated PNAA MEF substrate is measured using spotted Cy5-conjugated streptavidin to indicate a maximum enhancement factor of ~22× for the PNAA with an Ag layer thickness of 75 nm. The experimental results are shown to match the simulated results.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899375

RESUMO

Metal-enhanced fluorescence (MEF) is a unique phenomenon of surface plasmons, where light interacts with the metallic nanostructures and produces electromagnetic fields to enhance the sensitivity of fluorescence-based detection. In particular, this enhancement in sensing capacity is of importance to many research areas, including medical diagnostics, forensic science, and biotechnology. The article covers the basic mechanism of MEF and recent developments in plasmonic nanostructures fabrication for efficient fluorescence signal enhancement that are critically reviewed. The implications of current fluorescence-based technologies for biosensors are summarized, which are in practice to detect different analytes relevant to food control, medical diagnostics, and forensic science. Furthermore, characteristics of existing fabrication methods have been compared on the basis of their resolution, design flexibility, and throughput. The future projections emphasize exploring the potential of non-conventional materials and hybrid fabrication techniques to further enhance the sensitivity of MEF-based biosensors.

6.
Nanomaterials (Basel) ; 10(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727126

RESUMO

The tremendous increase in the production and consumption of titanium dioxide (TiO2) nanoparticles (NPs) in numerous industrial products and applications has augmented the need to understand their role in wastewater treatment technologies. Likewise, the deleterious effects of wastewater on the environment and natural resources have compelled researchers to find out most suitable, economical and environment friendly approaches for its treatment. In this context, the use of TiO2 NPs as the representative of photocatalytic technology for industrial wastewater treatment is coming to the horizon. For centuries, the use of industrial wastewater to feed agriculture land has been a common practice across the globe and the sewage sludge generated from wastewater treatment plants is also used as fertilizer in agricultural soils. Therefore, it is necessary to be aware of possible exposure pathways of these NPs, especially in the perspective of wastewater treatment and their impacts on the agro-environment. This review highlights the potential exposure route of TiO2 NPs from industrial applications to wastewater treatment and its impacts on the agro-environment. Key elements of the review present the recent developments of TiO2 NPs in two main sectors including wastewater treatment and the agro-environment along with their potential exposure pathways. Furthermore, the direct exposure routes of these NPs from production to end-user consumption until their end phase needs to be studied in detail and optimization of their suitable applications and controlled use to ensure environmental safety.

7.
Chemosphere ; 227: 17-25, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30981099

RESUMO

This study presents the impacts of TiO2 nanoparticles (TNPs) amendment on plant growth, phosphorus (P) content, and dissolved organic matter (DOM) composition in the rhizosphere. For this work, wheat plants (Galaxy-2013) were exposed to soil amended by different amounts of TNPs (i.e., 0, 50, and 100 mg TNP/kg of soil) for 40 days and harvested. The maximum increase in the shoots and roots lengths reached 15.9 ±â€¯0.3% and 3.8 ±â€¯0.3% respectively, which was concurrent with improved P content in the plants. Compared with the control, the P content in the shoots and roots was enriched by 23.4% and 17.9% at 50 mg TNP/kg of soil respectively. The increased electrical conductivity (EC) and decreased pH of the rhizosphere implied that the added TNPs might induce the enhancement of the P dissolution. Fluorescence spectroscopy revealed the increase of microbial activity as depicted by the humification index (HIX) changing from 0.88 ±â€¯0.02 to 0.92 ±â€¯0.01, with increasing TNPs amendments. Excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) showed the presence of four fluorescent components (C1 to C4) in the rhizosphere. Three of them (C1-C3) were related to humic-like substances, while the C4 was associated with protein-like fluorescence. EEM-PARAFAC results revealed the degradation of C4, and the enhancement of the other three components, which supported the stimulation of microbial activity by the TNPs amendment. This study provided new insights into the relation between improved phytoavailble P in plants and the changes in the rhizosphere soil solution chemistry and the DOM composition upon TNPs amendments.


Assuntos
Nanopartículas/química , Fósforo/análise , Poluentes do Solo/análise , Titânio/química , Análise Fatorial , Substâncias Húmicas/análise , Solo/química , Espectrometria de Fluorescência/métodos
8.
Sensors (Basel) ; 18(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423842

RESUMO

The detection of body fluids has been used to identify a suspect and build a criminal case. As the amount of evidence collected at a crime site is limited, a multiplex identification system for body fluids using a small amount of sample is required. In this study, we proposed a multiplex detection platform using an Ag vertical nanorod metal enhanced fluorescence (MEF) substrate for semen and vaginal fluid (VF), which are important evidence in cases of sexual crime. The Ag nanorod MEF substrate with a length of 500 nm was fabricated by glancing angle deposition, and amino functionalization was conducted to improve binding ability. The effect of incubation time was analyzed, and an incubation time of 60 min was selected, at which the fluorescence signal was saturated. To assess the performance of the developed identification chip, the identification of semen and VF was carried out. The developed sensor could selectively identify semen and VF without any cross-reactivity. The limit of detection of the fabricated microarray chip was 10 times better than the commercially available rapid stain identification (RSID) Semen kit.


Assuntos
Análise Serial de Proteínas/instrumentação , Análise do Sêmen/métodos , Sêmen/química , Vagina/química , Líquidos Corporais/química , Feminino , Fluorescência , Humanos , Masculino , Nanotubos/química , Análise de Sequência com Séries de Oligonucleotídeos
9.
Micromachines (Basel) ; 9(8)2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30424309

RESUMO

The application of microtechnology to traditional mechanical industries is limited owing to the lack of suitable micropatterning technology for durable materials including metal. In this research, a glassy carbon (GC) micromold was applied for the direct metal forming (DMF) of a microstructure on an aluminum (Al) substrate. The GC mold with microdome cavities was prepared by carbonization of a furan precursor, which was replicated from the thermal reflow photoresist master pattern. A microdome array with a diameter of 8.4 µm, a height of ~0.74 µm, and a pitch of 9.9 µm was successfully fabricated on an Al substrate by using DMF at a forming temperature of 645 °C and an applied pressure of 2 MPa. As a practical application of the proposed DMF process, the enhanced boiling heat transfer characteristics of the DMF microdome Al substrate were analyzed. The DMF microdome Al substrate showed 20.4 ± 2.6% higher critical heat flux and 34.1 ± 5.3% higher heat transfer coefficient than those of a bare Al substrate.

10.
Polymers (Basel) ; 10(6)2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30966683

RESUMO

A simple and cost-effective fabrication method for plasmonic nanolens arrays (PNA) with a narrow gap has been proposed for fabricating enhanced fluorescence substrates, in which the fluorophores interacting with the enhanced electromagnetic field generated by localized surface plasmons provide a higher fluorescence signal. The PNA was fabricated by the sequential depositions of the SiO2 and Ag layers on a UV-nanoimprinted nanodot array with a pitch of 500 nm, a diameter of 250 nm, and a height of 100 nm. During the deposition processes, the shape of the nanodots changed to that of nanolenses, and the gap between the nanolenses was decreased via sidewall deposition. To examine the feasibility of the fabricated PNA for enhanced fluorescence application, a streptavidin-Cy5 (SA-Cy5) conjugate dissolved in a saline buffer solution was spotted on the PNA, and the fluorescence signals of the SA-Cy5 were measured and compared with those on a bare glass substrate. The enhancement factor was affected by the gap between the nanolenses, and the maximum enhancement factor of ~128 was obtained from the PNA with a SiO2 layer thickness of 150 nm and an Ag layer thickness of 100 nm. Finally, an electromagnetic field analysis was used to examine the fluorescence signal enhancement, and was conducted using rigorous coupled wave analysis.

11.
J Agric Food Chem ; 65(28): 5598-5606, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28650653

RESUMO

Plants have the natural ability to withstand stress conditions through metabolic adjustments. The present study aimed at investigating the effects of titanium dioxide nanoparticles (TiO2 NPs) application (0, 25, 50, 150, 250, 500, and 750 mg kg-1) in phosphorus-deficient soil in terms of growth responses, P contents, and metabolic alterations in rice. TiO2 NPs application increased shoot length up to 14.5%. Phosphorus contents in rice roots, shoots, and grains were increased by 2.6-, 2.4-, and 1.3-fold, respectively, at 750 mg kg-1 of TiO2 NPs. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics revealed increased levels of amino acids, palmitic acid, and glycerol content in grains resulting from plants grown in 750 mg kg-1 TiO2 NPs-treated soil. Furthermore, no translocation of TiO2 NPs from the treated soil to rice grains was detected by inductively coupled plasma-optical emission spectrometry (ICP-OES), which suggests no risk of TiO2 NPs intake via grain consumption. The observed data indicates the strong relationship among NPs application, P contents, and metabolic alterations.


Assuntos
Nanopartículas/análise , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fósforo/análise , Titânio/análise , Nanopartículas/metabolismo , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo/química , Titânio/metabolismo
12.
Sci Rep ; 6: 22445, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26925828

RESUMO

The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...