Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1149391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206664

RESUMO

Dravet syndrome (Dravet) is a severe congenital developmental genetic epilepsy caused by de novo mutations in the SCN1A gene. Nonsense mutations are found in ∼20% of the patients, and the R613X mutation was identified in multiple patients. Here we characterized the epileptic and non-epileptic phenotypes of a novel preclinical Dravet mouse model harboring the R613X nonsense Scn1a mutation. Scn1aWT/R613X mice, on a mixed C57BL/6J:129S1/SvImJ background, exhibited spontaneous seizures, susceptibility to heat-induced seizures, and premature mortality, recapitulating the core epileptic phenotypes of Dravet. In addition, these mice, available as an open-access model, demonstrated increased locomotor activity in the open-field test, modeling some non-epileptic Dravet-associated phenotypes. Conversely, Scn1aWT/R613X mice, on the pure 129S1/SvImJ background, had a normal life span and were easy to breed. Homozygous Scn1aR613X/R613X mice (pure 129S1/SvImJ background) died before P16. Our molecular analyses of hippocampal and cortical expression demonstrated that the premature stop codon induced by the R613X mutation reduced Scn1a mRNA and NaV1.1 protein levels to ∼50% in heterozygous Scn1aWT/R613X mice (on either genetic background), with marginal expression in homozygous Scn1aR613X/R613X mice. Together, we introduce a novel Dravet model carrying the R613X Scn1a nonsense mutation that can be used to study the molecular and neuronal basis of Dravet, as well as the development of new therapies associated with SCN1A nonsense mutations in Dravet.

2.
Mol Cell ; 82(8): 1467-1476, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35452615

RESUMO

Messenger RNA (mRNA) translation by the ribosome represents the final step of a complicated molecular dance from DNA to protein. Although classically considered a decipherer that translates a 64-word genetic code into a proteome of astonishing complexity, the ribosome can also shape the transcriptome by controlling mRNA stability. Recent work has discovered that the ribosome is an arbiter of the general mRNA degradation pathway, wherein the ribosome transit rate serves as a major determinant of transcript half-lives. Specifically, members of the degradation complex sense ribosome translocation rates as a function of ribosome elongation rates. Central to this notion is the concept of codon optimality: although all codons impact translation rates, some are deciphered quickly, whereas others cause ribosome hesitation as a consequence of relative cognate tRNA concentration. These transient pauses induce a unique ribosome conformational state that is probed by the deadenylase complex, thereby inducing an orchestrated set of events that enhance both poly(A) shortening and cap removal. Together, these data imply that the coding region of an mRNA not only encodes for protein content but also impacts protein levels through determining the transcript's fate.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , Códon/genética , Códon/metabolismo , Proteínas/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
3.
Sci Rep ; 11(1): 13813, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226651

RESUMO

Integration of functional infrared photodetectors on silicon platforms has been gaining attention for diverse applications in the fields of imaging and sensing. Although III-V semiconductor is a promising candidate for infrared photodetectors on silicon, the difficulties in directly growing high-quality III-V on silicon and realizing functionalities have been a challenge. Here, we propose a design of III-V nanowires on silicon (100) substrates, which are self-assembled with gold plasmonic nanostructures, as a key building block for efficient and functional photodetectors on silicon. Partially gold-coated III-V nanowire arrays form a plasmonic-photonic hybrid metasurface, wherein the localized and propagating plasmonic resonances enable high absorption in III-V nanowires. Unlike conventional photodetectors, numerical calculations reveal that the proposed meta-absorber exhibits high sensitivity to the polarization, incident angle, wavelength of input light, as well as the surrounding environment. These features represent that the proposed meta-absorber design can be utilized not only for efficient infrared photodetectors on silicon but for various sensing applications with high sensitivity and functionality.

4.
Proc Natl Acad Sci U S A ; 116(14): 7071-7076, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30890637

RESUMO

Parvalbumin-positive (PV+) interneurons play a pivotal role in orchestrating windows of experience-dependent brain plasticity during development. Critical period closure is marked by the condensation of a perineuronal net (PNN) tightly enwrapping subsets of PV+ neurons, both acting as a molecular brake on plasticity and maintaining mature PV+ cell signaling. As much of the molecular organization of PNNs exists at length scales near or below the diffraction limit of light microscopy, we developed a superresolution imaging and analysis platform to visualize the structural organization of PNNs and the synaptic inputs perforating them in primary visual cortex. We identified a structural trajectory of PNN maturation featuring a range of net structures, which was accompanied by an increase in Synaptotagmin-2 (Syt2) signals on PV+ cells suggestive of increased inhibitory input between PV+ neurons. The same structural trajectory was followed by PNNs both during normal development and under conditions of critical period delay by total sensory deprivation or critical period acceleration by deletion of MeCP2, the causative gene for Rett syndrome, despite shifted maturation levels under these perturbations. Notably, superresolution imaging further revealed a decrease in Syt2 signals alongside an increase in vesicular glutamate transporter-2 signals on PV+ cells in MeCP2-deficient animals, suggesting weaker recurrent inhibitory input between PV+ neurons and stronger thalamocortical excitatory inputs onto PV+ cells. These results imply a latent imbalanced circuit signature that might promote cortical silencing in Rett syndrome before the functional regression of vision.


Assuntos
Proteína 2 de Ligação a Metil-CpG/metabolismo , Rede Nervosa/metabolismo , Plasticidade Neuronal , Síndrome de Rett/metabolismo , Sinapses/metabolismo , Sinaptotagmina II/metabolismo , Córtex Visual/metabolismo , Animais , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Rede Nervosa/diagnóstico por imagem , Síndrome de Rett/diagnóstico por imagem , Síndrome de Rett/genética , Sinapses/genética , Sinaptotagmina II/genética , Córtex Visual/diagnóstico por imagem
5.
eNeuro ; 3(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022630

RESUMO

Synaptic signaling involves the release of neurotransmitter from presynaptic active zones (AZs). Proteins that regulate vesicle exocytosis cluster at AZs, composing the cytomatrix at the active zone (CAZ). At the Drosophila neuromuscular junction (NMJ), the small GTPase Rab3 controls the distribution of CAZ proteins across release sites, thereby regulating the efficacy of individual AZs. Here we identify Rab3-GEF as a second protein that acts in conjunction with Rab3 to control AZ protein composition. At rab3-GEF mutant NMJs, Bruchpilot (Brp) and Ca(2+) channels are enriched at a subset of AZs, leaving the remaining sites devoid of key CAZ components in a manner that is indistinguishable from rab3 mutant NMJs. As the Drosophila homologue of mammalian DENN/MADD and Caenorhabditis elegans AEX-3, Rab3-GEF is a guanine nucleotide exchange factor (GEF) for Rab3 that stimulates GDP to GTP exchange. Mechanistic studies reveal that although Rab3 and Rab3-GEF act within the same mechanism to control AZ development, Rab3-GEF is involved in multiple roles. We show that Rab3-GEF is required for transport of Rab3. However, the synaptic phenotype in the rab3-GEF mutant cannot be fully explained by defective transport and loss of GEF activity. A transgenically expressed GTP-locked variant of Rab3 accumulates at the NMJ at wild-type levels and fully rescues the rab3 mutant but is unable to rescue the rab3-GEF mutant. Our results suggest that although Rab3-GEF acts upstream of Rab3 to control Rab3 localization and likely GTP-binding, it also acts downstream to regulate CAZ development, potentially as a Rab3 effector at the synapse.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Junção Neuromuscular/citologia , Terminações Pré-Sinápticas/fisiologia , Proteínas rab3 de Ligação ao GTP/metabolismo , Potenciais de Ação/genética , Análise de Variância , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Microscopia Confocal , Junção Neuromuscular/genética , Neurônios/fisiologia , Técnicas de Patch-Clamp , Proteínas rab3 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...