Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 27(1): 4, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670488

RESUMO

BACKGROUND: Obesity, a serious threat to public health, is linked to chronic metabolic complications including insulin resistance, type-2 diabetes, and metabolic dysfunction-associated fatty liver disease (MAFLD). Current obesity medications are challenged by poor effectiveness, poor patient compliance, and potential side effects. Verapamil is an inhibitor of L-type calcium channels, FDA-approved for the treatment of hypertension. We previously investigated the effect of verapamil on modulating autophagy to treat obesity-associated lipotoxicity. This study aims to develop a verapamil transdermal patch and to evaluate its anti-obesity effects. METHODS: Verapamil is loaded in biomimetic vascular bundle-like carboxymethyl pullulan-based supramolecular hydrogel patches cross-linked with citric acid and glycerol linkages (CLCMP). The investigation was then carried out to determine the therapeutic effect of verapamil-loaded CLCMP (Vera@CLCMP) on diet-induced obese mice. RESULTS: Vera@CLCMP hydrogel patches with hierarchically organized and anisotropic pore structures not only improved verapamil bioavailability without modifying its chemical structure but also enhanced verapamil release through the stratum corneum barrier. Vera@CLCMP patches exhibit low toxicity and high effectiveness at delivering verapamil into the systemic circulation through the dermis in a sustained manner. Specifically, transdermal administration of this patch into diet-induced obese mice drastically improved glucose tolerance and insulin sensitivity and alleviated metabolic derangements associated with MAFLD. Furthermore, we uncovered a distinct molecular mechanism underlying the anti-obesity effects associated with the hepatic NLR family pyrin domain-containing 3 (NLRP3) inflammasome and autophagic clearance by the vera@CLCMP hydrogel patches. CONCLUSION: The current study provides promising drug delivery platforms for long-term family treatment of chronic diseases, including obesity and metabolic dysfunctions.

2.
Exp Mol Med ; 54(3): 239-251, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260799

RESUMO

Chronic exposure to bile acid in the liver due to impaired bile flow induces cholestatic liver disease, resulting in hepatotoxicity and liver fibrosis. Sestrin2, a highly conserved, stress-inducible protein, has been implicated in cellular responses to multiple stress conditions and the maintenance of cellular homeostasis. However, its role in cholestatic liver injury is not fully understood. In this study, we investigated the role of hepatic Sestrin2 in cholestatic liver injury and its underlying mechanisms using in vivo and in vitro approaches. Hepatic Sestrin2 expression was upregulated by activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein-ß (C/EBP-ß) after treatment with bile acids and correlated with endoplasmic reticulum (ER) stress responses. Bile-duct ligation (BDL)-induced hepatocellular apoptosis and liver fibrosis were exacerbated in Sestrin2-knockout (Sesn2-/-) mice. Moreover, Sestrin2 deficiency enhanced cholestasis-induced hepatic ER stress, whereas Sestrin2 overexpression ameliorated bile acid-induced ER stress. Notably, the mammalian target of rapamycin (mTOR) inhibitor rapamycin and the AMP-activated protein kinase (AMPK) activator AICAR reversed bile acid-induced ER stress in Sestrin2-deficient cells. Furthermore, Sestrin2 deficiency promoted cholestasis-induced hepatic pyroptosis by activating NLRP3 inflammasomes. Thus, our study provides evidence for the biological significance of Sestrin2 and its relationship with cholestatic liver injury, suggesting the potential role of Sestrin2 in regulating ER stress and inflammasome activation during cholestatic liver injury.


Assuntos
Colestase , Inflamassomos , Peroxidases , Animais , Colestase/metabolismo , Estresse do Retículo Endoplasmático , Inflamassomos/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peroxidases/genética , Piroptose , Transdução de Sinais
3.
Cancers (Basel) ; 12(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899752

RESUMO

Oncogenic activation of the mammalian target of rapamycin complex 1 (mTORC1) leads to endometrial cancer cell growth and proliferation. Sestrin2 (SESN2), a highly conserved stress-inducible protein, is involved in homeostatic regulation via inhibition of reactive oxygen species (ROS) and mTORC1. However, the role of SESN2 in human endometrial cancer remains to be investigated. Here, we investigated expression, clinical significance, and underlying mechanisms of SESN2 in endometrial cancer. SESN2 was upregulated more in endometrial cancer tissues than in normal endometrial tissues. Furthermore, upregulation of SESN2 statistically correlated with shorter overall survival and disease-free survival in patients with endometrial cancer. SESN2 expression strongly correlated with mTORC1 activity, suggesting its impact on prognosis in endometrial cancer. Additionally, knockdown of SESN2 promoted cell proliferation, migration, and ROS production in endometrial cancer cell lines HEC-1A and Ishikawa. Treatment of these cells with mTOR inhibitors reversed endometrial cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT) marker expression. Moreover, in a xenograft nude mice model, endometrial cancer growth increased by SESN2 knockdown. Thus, our study provides evidence for the prognostic significance of SESN2, and a relationship between SESN2, the mTORC1 pathway, and endometrial cancer growth, suggesting SESN2 as a potential therapeutic target in endometrial cancer.

4.
Cells ; 9(3)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188057

RESUMO

Emerging evidence indicates that aberrant maternal inflammation is associated with several pregnancy-related disorders such as preeclampsia, preterm birth, and intrauterine growth restriction. Sirtuin1 (SIRT1), a class III histone deacetylase, is involved in the regulation of various physiopathological processes including cellular inflammation and metabolism. However, the effect of SIRT1 on the placental proinflammatory environment remains to be elucidated. In this study, we investigated the effect of SIRT1 on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human first-trimester trophoblasts (Sw.71 and HTR-8/SVneo cells). Treatment with LPS elevated SIRT1 expression and induced NLRP3 inflammasome activation in mouse placental tissues and human trophoblasts. Knockdown of SIRT1 enhanced LPS-induced NLRP3 inflammasome activation, inflammatory signaling, and subsequent interleukin (IL)-1ß secretion. Furthermore, knockdown of NLRP3 considerably attenuated the increase of IL-1ß secretion in SIRT1-knockdown cells treated with LPS. Moreover, SIRT1 inhibited LPS-induced NLRP3 inflammasome activation by reducing oxidative stress. This study revealed a novel mechanism via which SIRT1 exerts anti-inflammatory effects, suggesting that SIRT1 is a potential therapeutic target for the prevention of inflammation-associated pregnancy-related complications.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 1/genética , Trofoblastos/metabolismo , Animais , Feminino , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/biossíntese , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nascimento Prematuro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...