Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurorobot ; 17: 1293878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186671

RESUMO

This paper presents a teleoperation system of robot grasping for undefined objects based on a real-time EEG (Electroencephalography) measurement and shared autonomy. When grasping an undefined object in an unstructured environment, real-time human decision is necessary since fully autonomous grasping may not handle uncertain situations. The proposed system allows involvement of a wide range of human decisions throughout the entire grasping procedure, including 3D movement of the gripper, selecting proper grasping posture, and adjusting the amount of grip force. These multiple decision-making procedures of the human operator have been implemented with six flickering blocks for steady-state visually evoked potentials (SSVEP) by dividing the grasping task into predefined substeps. Each substep consists of approaching the object, selecting posture and grip force, grasping, transporting to the desired position, and releasing. The graphical user interface (GUI) displays the current substep and simple symbols beside each flickering block for quick understanding. The tele-grasping of various objects by using real-time human decisions of selecting among four possible postures and three levels of grip force has been demonstrated. This system can be adapted to other sequential EEG-controlled teleoperation tasks that require complex human decisions.

2.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086774

RESUMO

Since path planning for multi-arm manipulators is a complicated high-dimensional problem, effective and fast path generation is not easy for the arbitrarily given start and goal locations of the end effector. Especially, when it comes to deep reinforcement learning-based path planning, high-dimensionality makes it difficult for existing reinforcement learning-based methods to have efficient exploration which is crucial for successful training. The recently proposed soft actor-critic (SAC) is well known to have good exploration ability due to the use of the entropy term in the objective function. Motivated by this, in this paper, a SAC-based path planning algorithm is proposed. The hindsight experience replay (HER) is also employed for sample efficiency and configuration space augmentation is used in order to deal with complicated configuration space of the multi-arms. To show the effectiveness of the proposed algorithm, both simulation and experiment results are given. By comparing with existing results, it is demonstrated that the proposed method outperforms the existing results.

3.
Sensors (Basel) ; 12(7): 8640-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23012509

RESUMO

This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...