Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Biotechnol ; 32(14): 2117-2129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860736

RESUMO

This study aimed to identify and elucidate the mechanism underlying the protective effect of tricin-enriched Zizania latifolia (Z. latifolia) extract (ETZL) against free fatty acid (FFA)-induced lipid accumulation in vitro and non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet and fructose diet (HFD/F) in vivo. ETZL treatment significantly lowered body weight gain and decreased adipose tissue, lipid, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels in HFD/F-fed mice. ETZL acted on phosphorylated acetyl-CoA carboxylase (ACC) and anti-peroxisome proliferator-activated receptor α (PPARα) by activating the adenosine monophosphate-activated protein kinase (AMPK) pathway and inhibiting sterol regulatory element-binding proteins-1 (SREBP)/fatty acid synthase (FAS) signaling to inhibit de novo adipogenesis and increase fatty acid oxidation. In addition, treatment with ETZL increased nuclear factor erythroid-2-related factor 2 (Nrf2) levels to activate the antioxidant pathway. FFA-induced oxidative stress and fatty acid accumulation in HepG2 cells confirmed the improvement in fat accumulation through the AMPK and Nrf2 pathway activities of ETZL. These results suggest that ETZL ameliorates NAFLD by regulating lipid metabolism and defending against oxidative stress via AMPK-dependent pathways.

2.
Curr Issues Mol Biol ; 45(2): 1287-1305, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826029

RESUMO

Alzheimer's disease (AD) is a worldwide problem. Currently, there are no effective drugs for AD treatment. Scrophularia buergeriana Miquel (SB) is a traditional herbal medicine used in Korea to treat various diseases. Our previous studies have shown that ethanol extract of SB roots (SBE, Brainon®) exhibits potent anti-amnesic effects in Aß1-42- or scopolamine-treated memory impairment mice model and neuroprotective effects in a glutamate-induced SH-SY5Y cell model. In this study, we evaluated the therapeutic effects of Brainon® and its mechanism of action in senescence-accelerated mouse prone 8 (SAMP8) mice. Brainon® (30 or 100 mg/kg/day) was orally treated to six-month-old SAMP8 mice for 12 weeks. Results revealed that Brainon® administration effectually ameliorated cognitive deficits in Y-maze and passive avoidance tests. Following the completion of behavioral testing, western blotting was performed using the cerebral cortex. Results revealed that Brainon® suppressed Aß1-42 accumulation, Tau hyperphosphorylation, oxidative stress, and inflammation and alleviated apoptosis in SAMP8 mice. Brainon® also promoted synaptic function by downregulating the expression of AChE and upregulating the expression of p-CREB/CREB and BDNF. Furthermore, Brainon® restored SAMP8-reduced expression of ChAT and -dephosphorylated of ERK and also decreased AChE expression in the hippocampus. Furthermore, Brainon® alleviated AD progression by promoting mitophagy/autophagy to maintain normal cellular function as a novel finding of this study. Our data suggest that Brainon® can remarkably improve cognitive deficiency with the potential to be utilized in functional food for improving brain health.

3.
Sci Rep ; 10(1): 10914, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616823

RESUMO

Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide (1), a polyacetylene (2) and a lignan (3) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound 1) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast-specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK-c-Fos-NFATC1 cascade.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/prevenção & controle , Echinacea/química , Osteogênese/efeitos dos fármacos , Fitoterapia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Conservadores da Densidade Óssea/isolamento & purificação , Reabsorção Óssea/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Óxido Nítrico/biossíntese , Fosforilação/efeitos dos fármacos , Raízes de Plantas/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ligante RANK/farmacologia , Células RAW 264.7 , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
4.
Bioresour Technol ; 82(2): 157-64, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12003317

RESUMO

Proteolysis is one of the main enzymatic reactions involved in waste activated sludge (WAS) digestion. In this study, proteases excreted from Bacillus stearothermophilus (ATCC 31197) were classified, and an enhancement of protease activity was achieved using economical chemical additives for WAS digestion. Proteases excreted from B. stearothermophilus were classified into two families: serine and metallo-proteases. Various metal ions were investigated as additives which could potentially enhance protease activity. It was observed that Ca2+ and Fe2+ could markedly activate these enzymes. These results were applied to thermophilic aerobic digestion (TAD) of industrial WAS using B. stearothermophilus. The addition of these divalent ions enhanced the degradation performance of the TAD process in terms of reducing the total suspended solids (TSSs), the dissolved organic carbon (DOC) content, and the intracellular and extracellular protein concentrations. The best result, with respect to protein reduction in a digestion experiment, was obtained by the addition of 2 mM Ca2+. Therefore, a proposed TAD process activated by calcium addition can be successfully used for industrial and municipal WAS digestion to the upgrading of TAD process performance.


Assuntos
Geobacillus stearothermophilus/enzimologia , Biotecnologia , Cálcio/química , Cálcio/farmacologia , Cátions , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Hidrólise , Íons , Ferro/farmacologia , Metaloendopeptidases/química , Modelos Estatísticos , Serina Endopeptidases/química , Temperatura , Fatores de Tempo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...