Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392757

RESUMO

A carbonized interlayer effectively helps to improve the electrochemical performance of lithium-sulfur (Li-S) batteries. In this study, a simple and inexpensive carbon intermediate layer was fabricated using a traditional Korean paper called "hanji". This carbon interlayer has a fibrous porous structure, with a specific surface area of 91.82 m2 g-1 and a BJH adsorption average pore diameter of 26.63 nm. The prepared carbon interlayer was utilized as an intermediary layer in Li-S batteries to decrease the charge-transfer resistance and capture dissolved lithium polysulfides. The porous fiber-shaped carbon interlayer suppressed the migration of polysulfides produced during the electrochemical process. The carbon interlayer facilitates the adsorption of soluble lithium polysulfides, allowing for their re-utilization in subsequent cycles. Additionally, the carbon interlayer significantly reduces the polarization of the cell. This simple strategy results in a significant improvement in cycle performance. Consequently, the discharge capacity at 0.5 C after 150 cycles was confirmed to have improved by more than twofold, reaching 230 mAh g-1 for cells without the interlayer and 583 mAh g-1 for cells with the interlayer. This study demonstrates a simple method for improving the capacity of Li-S batteries by integrating a functional carbon interlayer.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38334555

RESUMO

An accurate humidity measurement is essential in various industries, including product stability, pharmaceutical and food preservation, environmental control, and precise humidity management in experiments and industrial processes. Crafting effective humidity sensors through precise material selection is crucial for detecting minute humidity levels across various fields, ultimately enhancing productivity and maintaining product quality. Metal-organic frameworks (MOFs), particularly zeolitic imidazolate frameworks (ZIFs), exhibit remarkable properties and offer a wide range of applications in catalysis, sensing, and gas storage due to their structural stability, which resembles zeolites. The previous research on MOF-based humidity sensors have primarily used electrical resistance-based methods. Recently, however, interest has shifted to capacitive-based sensors using MOFs due to the need for humidity sensors at low humidity and the resulting high sensitivity. Nevertheless, further studies are required to optimize particle structure and size. This study analyzes ZIF-8, a stable MOF synthesized in varying particle sizes, to evaluate its performance as a humidity sensor. The structural, chemical, and sensing properties of synthesized ZIF-8 particles ranging from 50 to 200 nanometers were examined through electron microscopy, spectroscopic, and electrochemical analyses. The fabricated copper electrodes combined with these particles demonstrated stable and linear humidity sensing capabilities within the range of 3% to 30% relative humidity (RH).

3.
J Phys Chem Lett ; 15(6): 1590-1595, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306160

RESUMO

The Bi2O2Se surfaces are well-known to possess 50% Se vacancies, yet they have shown no in-gap states within the indirect bandgap (∼0.8 eV). We have found that the hidden in-gap states arising from the Se vacancies in a 2 × 1 pattern induce a reduced direct bandgap (∼0.5 eV). Such a reduced direct bandgap is responsible for the high electron mobility of Bi2O2Se. Moreover, the Bi oxide overlayers of the Bi thin films, formed through air exposure and annealing, unexpectedly exhibit a large direct bandgap (∼2.1 eV). The simplified fabrication of Bi oxide overlayers provides promise for improving Bi2O2Se electronic devices and enhancing photocatalytic activity.

4.
Environ Sci Technol ; 58(5): 2564-2573, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38278139

RESUMO

The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 µM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir-Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively.


Assuntos
Cromatos , Poluentes Químicos da Água , Cromatos/química , Magnésio , Ferro/química , Poluentes Químicos da Água/análise , Cromo/análise , Cromo/química , Cinética , Concentração de Íons de Hidrogênio , Adsorção
5.
J Colloid Interface Sci ; 652(Pt B): 1533-1544, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660610

RESUMO

Two-dimensional (2D) "face-to-face" heterojunctions promote interfacial charge transfer and separation in composite photocatalysts. Here, we report an efficient 2D/2D step-scheme (S-scheme) photocatalyst composed of Bi2MoO6/Zn3V2O8 (BMO/ZVO), which has been designed and prepared via the self-assembly of BMO and ZVO nanoflakes. The heterojunction with an optimized composition of 30% BMO/ZVO showed extended light absorption capacity and enhanced separation efficiency of photogenerated carriers. Density functional theory (DFT) calculation on work function and charge density revealed the presence of a built-in electric field at the interface region, which should facilitate the separation of photogenerated electron-hole pairs. This work showed that it is essential to select two photocatalysts with interlaced band arrangement and to fine-tune the heterojunction interface for the preparation of S-scheme heterojunctions to achieve high photocatalytic efficiency.

6.
ACS Appl Mater Interfaces ; 15(39): 45732-45744, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37734915

RESUMO

A proper control of defects in TiO2 thin films is challenging work for enhancing the photoelectrochemical (PEC) efficiency in water splitting processes. Additionally, a deep understanding of how defects affect the PEC performance of TiO2 thin films is of great interest for achieving better performance. With these aims, we prepared defective amorphous TiOx thin films at various growth temperatures by atomic layer deposition using tetrakis(dimethylamido)titanium as the Ti precursor. Careful X-ray photoelectron spectroscopy and electron spin resonance spectroscopy analyses revealed that the defect concentration in the TiOx thin films can be controlled by adjusting the growth temperature during the ALD process. We also evaluated the light absorption properties of the deposited TiOx thin films using ultraviolet-visible absorption spectroscopy. And it was found that the TiOx thin film deposited at a growth temperature of 200 °C exhibited the highest defect concentration and the highest photocurrent density of 0.051 mA/cm2 at 1.23 V vs reversible hydrogen electrode (RHE) compared to those of the other films. The light absorption efficiency, photogenerated charge separation efficiency, and charge transfer efficiency of defective amorphous TiOx thin films were carefully studied to understand the correlation between the defect concentration in the prepared TiOx thin film and its PEC activity. This study provides insight into the PEC properties of defective amorphous ALD-TiOx thin films.

7.
ACS Appl Mater Interfaces ; 15(35): 41362-41372, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610347

RESUMO

Molybdenum disulfide (MoS2) is a representative two-dimensional transition metal dichalcogenide and has a unique electronic structure and associated physicochemical properties. The redox property of MoS2 has recently attracted significant attention from various fields, such as biomedical applications. Intriguingly, MoS2 functions as an antioxidant in certain applications and as a pro-oxidant in others. We use the mediated electrochemical probing method to understand the redox behavior of MoS2. This method reveals that MoS2 (i) has a reversible and fast redox activity at a mild potential (between -0.20 and +0.25 V vs Ag/AgCl), (ii) functions as an antioxidant for molecules that have different redox mechanisms (electron or hydrogen atom transfer), and (iii) is electrochemically or molecularly rechargeable. Finally, we show that MoS2 reduces oxidized molecules more efficiently than the potent natural antioxidant, curcumin. This study enhances our understanding of MoS2 and shows its potential as an advanced antioxidant reservoir.

8.
Nanoscale ; 15(33): 13635-13644, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37548600

RESUMO

The development of technologies for electromagnetic wave contamination has garnered attention. Among the various electromagnetic wave frequencies, for high frequencies such as those in the K and Ka ranges, there is a limitation of using only the properties of a single material. Therefore, it is necessary to improve the absorption coefficients by increasing the path of electromagnetic waves through internal scattering at an interface or a structure inside the material. Here, we accurately demonstrated the role of Sn in the growth of an indium tin oxide (ITO) nano-branch structure and grew high-density ITO nano-branches with the lowest thickness possible. Consequently, we obtained shielding efficiencies of 21.09 dB (K band) and 17.81 dB (Ka band) for a film with a thickness of 0.00364 mm. Owing to the significantly high specific shielding efficiency and low thickness and weight, it is expected to be applied in various fields.

9.
Nano Lett ; 23(14): 6528-6535, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432884

RESUMO

Rapid advances in flexible optoelectronic devices necessitate the concomitant development of high-performance, cost-efficient, and flexible transparent conductive electrodes (TCEs). This Letter reports an abrupt enhancement in the optoelectronic characteristics of ultrathin Cu-layer-based TCEs via Ar+-mediated modulation of the chemical and physical states of a ZnO support surface. This approach strongly regulates the growth mode for the subsequently deposited Cu layer, in addition to marked alteration to the ZnO/Cu interface states, resulting in exceptional TCE performance in the form of ZnO/Cu/ZnO TCEs. The resultant Haacke figure of merit (T10/Rs) of 0.063 Ω-1, 53% greater than that of the unaltered, otherwise identical structure, corresponds to a record-high value for Cu-layer-based TCEs. Moreover, the enhanced TCE performance in this approach is shown to be highly sustainable under severe simultaneous loadings of electrical, thermal, and mechanical stresses.

10.
ACS Appl Mater Interfaces ; 15(27): 32783-32791, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366002

RESUMO

A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Nitrogênio/química , Sulfatos , Pontos Quânticos/química , Enxofre/química
11.
Small ; 19(34): e2300290, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37127866

RESUMO

This study suggests a Ru/ZnO bilayer grown using area-selective atomic layer deposition (AS-ALD) as a multifunctional layer for advanced Cu metallization. As a diffusion barrier and glue layer, ZnO is selectively grown on SiO2 , excluding Cu, where Ru, as a liner and seed layer, is grown on both surfaces. Dodecanethiol (DDT) is used as an inhibitor for the AS-ALD of ZnO using diethylzinc and H2 O at 120 °C. H2 plasma treatment removes the DDT adsorbed on Cu, forming inhibitor-free surfaces. The ALD-Ru film is then successfully deposited at 220 °C using tricarbonyl(trimethylenemethane)ruthenium and O2 . The Cu/bilayer/Si structural and electrical properties are investigated to determine the diffusion barrier performance of the bilayer film. Copper silicide is not formed without the conductivity degradation of the Cu/bilayer/Si structure, even after annealing at 700 °C. The effect of ZnO on the Ru/SiO2 structure interfacial adhesion energy is investigated using a double-cantilever-beam test and is found to increase with ZnO between Ru and SiO2 . Consequently, the Ru/ZnO bilayer can be a multifunctional layer for advanced Cu interconnects. Additionally, the formation of a bottomless barrier by eliminating ZnO on the via bottom, or Cu, is expected to decrease the via resistance for the ever-shrinking Cu lines.

12.
Molecules ; 28(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241739

RESUMO

The preparation of mercapto-reduced graphene oxides (m-RGOs) via a solvothermal reaction using P4S10 as a thionating agent has demonstrated their potential as an absorbent for scavenging heavy metal ions, particularly Pb2+, from aqueous solutions due to the presence of thiol (-SH) functional groups on their surface. The structural and elemental analysis of m-RGOs was conducted using a range of techniques, including X-ray diffraction (XRD), Raman spectroscopy, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy equipped with energy-dispersive spectroscopy (STEM-EDS), and X-ray photoelectron spectroscopy (XPS). At pH 7 and 25 °C, the maximum adsorption capacity of Pb2+ ions on the surface of m-RGOs was determined to be approximately 858 mg/g. The heavy metal-S binding energies were used to determine the percent removal of the tested heavy metal ions, with Pb2+ exhibiting the highest percentage removal, followed by Hg2+ and Cd2+ ions having the lowest percent removal, and the binding energies observed were Pb-S at 346 kJ/mol, Hg-S at 217 kJ/mol, and Cd-S at 208 kJ/mol. The time-dependent removal study of Pb2+ ions also yielded promising results, with almost 98% of Pb2+ ions being removed within 30 min at pH 7 and 25 °C using a 1 ppm Pb2+ solution as the test solution. The findings of this study clearly demonstrate the potential and efficiency of thiol-functionalized carbonaceous material for the removal of environmentally harmful Pb2+ from groundwater.

13.
Sci Adv ; 9(8): eadd8328, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827373

RESUMO

Boosting dielectric permittivity representing electrical polarizability of dielectric materials has been considered a keystone for achieving scientific breakthroughs as well as technological advances in various multifunctional devices. Here, we demonstrate sizable enhancements of low-frequency dielectric responses in oxygen-deficient oxide ceramics through specific treatments under humid environments. Ultrahigh dielectric permittivity (~5.2 × 106 at 1 Hz) is achieved by hydrogenation, when Ni-substituted BaTiO3 ceramics are exposed to high humidity. Intriguingly, thermal annealing can restore the dielectric on-state (exhibiting huge polarizability in the treated ceramics) to the initial dielectric off-state (displaying low polarizability of ~103 in the pristine ceramics after sintering). The conversion between these two dielectric states via the ambient environment-mediated treatments and the successive application of external stimuli allows us to realize reversible control of dielectric relaxation characteristics in oxide ceramics. Conceptually, our findings are of practical interest for applications to highly efficient dielectric-based humidity sensors.

14.
J Hazard Mater ; 448: 130927, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764253

RESUMO

This study aimed to evaluate the reducing effects of calcite and phosphogypsum on arsenate [As(V)] availability to plants and elucidate the mechanisms of As(V) immobilization. The concentration of available As(V) to plants in upland arable soils with 1% calcite and phosphogypsum decreased to 17.4% and 36.9%, respectively, compared to the control. As(V) phytoavailability depends on the soil pH and calcium materials. The process of stabilizing As(V) (F3; anion exchange) with phosphogypsum is faster and easier compared to that with calcite (F4; bind to carbonate), but it results in a less stable form. New Ca-As(V) minerals (Ca52(HAsO4)x(AsO4)∙yH2O, Ca5H2x(AsO4)∙yH2O, or Ca32(AsO4)∙10 H2O) were identified in X-ray diffraction (XRD) patterns with calcite treatment. Precipitation, the primary mechanism induced by calcite, was activated at a soil pH above 8.0. Based on the deconvolution of calcium and sulfur X-ray photoelectron spectroscopy spectra and the peak shift in the XRD pattern in phosphogypsum, the substitution in which SO42- is exchanged with HAsO42- is the primary mechanism for As(V) immobilization. Substitution induced by phosphogypsum is a suitable reaction in upland arable soils, the predominant form of As(V) in the soil, with a pH range of 5-7.

15.
Nanomaterials (Basel) ; 12(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296795

RESUMO

Microtube-like porous carbon (MPC) and tube-like porous carbon-sulfur (MPC-S) composites were synthesized by carbonizing milkweed pappus with sulfur, and they were used as cathodes for lithium-sulfur batteries. The morphology and uniformity of these materials were characterized using X-ray powder diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy with an energy-dispersive X-ray analyzer, thermogravimetric analysis, and X-ray photoelectron spectrometry. The electrochemical performance of the MPC-S cathodes was measured using the charge/discharge cycling performance, C rate, and AC impedance. The composite cathodes with 93.8 wt.% sulfur exhibited a stable specific capacity of 743 mAh g-1 after 200 cycles at a 0.5 C.

16.
Adv Mater ; 34(42): e2205825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36069028

RESUMO

Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO3 is reported, which boosts the square-tensile-strain to BaTiO3 and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation. First-principles calculations propose a complex of an oxygen vacancy and two Ti3+ ions coins a charge-neutral defect-dipole. Cooperative control of the defect-dipole and the spontaneous polarization reveals ternary in-plane polar states characterized by biased/pinched hysteresis loops. Furthermore, it is experimentally demonstrated that three electrically controlled polar-ordering states lead to switchable and nonvolatile dielectric states for application of nondestructive electro-dielectric memory. This discovery opens a new route to develop functional materials via manipulating defect-dipoles and offers a novel platform to advance heteroepitaxy beyond the prevalent perovskite substrates.

17.
Nano Lett ; 22(7): 3133-3140, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362976

RESUMO

A methodology for the simultaneous modulation of the chemical and physical states of an amorphous TiOx layer surface and its impact on the subsequent deposition of a polycrystalline Ag layer are presented. The smoothened TiOx layer surface comprising chemically altered, oxygen-deficient states serves as a nucleating platform for Ag deposition, facilitating a marked increase (∼75%) in the nucleation number density, which strongly enhances the wettability of ultrathin Ag layers. The physically smoothened TiOx/Ag interface further reduces the optical and electrical losses. When the proposed methodology is applied to TiOx/Ag/ZnO transparent conductive electrodes (TCEs), exceptional TCE properties are yielded owing to the simultaneous improvement in visible transparency and electrical conductivity; specifically, a record-high 0.22 Ω-1 Haacke figure of merit is realized. TCEs are prepared on flexible substrates to verify their applicability as stand-alone flexible transparent heaters and as integrated heaters within electrochromic devices to enhance color-switching reactions.

18.
ACS Appl Mater Interfaces ; 14(10): 12797-12811, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234455

RESUMO

A vital objective in the wetting of Au deposited on chemically heterogeneous oxides is to synthesize a completely continuous, highly crystalline, ultrathin-layered geometry with minimized electrical and optical losses. However, no effective solution has been proposed for synthesizing an ideal Au-layered structure. This study presents evidence for the effectiveness of atomic oxygen-mediated growth of such an ideal Au layer by improving Au wetting on ZnO substrates with a substantial reduction in free energy. The unexpected outcome of the atomic oxygen-mediated Au growth can be attributed to the unconventional segregation and incorporation of atomic oxygen along the outermost boundaries of Au nanostructures evolving in the clustering and layering stages. Moreover, the experimental and numerical investigations revealed the spontaneous migration of atomic oxygen from an interstitial oxygen surplus ZnO bulk to the Au-ZnO interface, as well as the segregation (float-out) of the atomic oxygen toward the top Au surfaces. Thus, the implementation of a 4-nm-thick, two-dimensional, quasi-single-crystalline Au layer with a nearly complete crystalline realignment at a mild temperature (570 K) enabled exceptional optoelectrical performance with record-low resistivity (<7.5 × 10-8 Ω·m) and minimal optical loss (∼3.5%) at a wavelength of 700 nm.

19.
ACS Nano ; 16(2): 2535-2545, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080370

RESUMO

An urgent need in chemodynamic therapy (CDT) is to achieve high Fenton catalytic efficiency at small doses of CDT agents. However, simple general promotion of the Fenton reaction increases the risk of damaging normal cells along with the cancer cells. Therefore, a tailored strategy to selectively enhance the Fenton reactivity in tumors, for example, by taking advantage of the characteristics of the tumor microenvironment (TME), is in high demand. Herein, a heterogeneous CDT system based on copper-iron peroxide nanoparticles (CFp NPs) is designed for TME-mediated synergistic therapy. CFp NPs degrade under the mildly acidic conditions of TME, self-supply H2O2, and the released Cu and Fe ions, with their larger portions at lower oxidation states, cooperatively facilitate hydroxyl radical production through a highly efficient catalytic loop to achieve an excellent tumor therapeutic efficacy. This is distinct from previous heterogeneous CDT systems in that the synergism is closely coupled with the Cu+-assisted conversion of Fe3+ to Fe2+ rather than their independent actions. As a result, almost complete ablation of tumors at a minimal treatment dose is demonstrated without the aid of any other therapeutic modality. Furthermore, CFp NPs generate O2 during the catalysis and exhibit a TME-responsive T1 magnetic resonance imaging contrast enhancement, which are useful for alleviating hypoxia and in vivo monitoring of tumors, respectively.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Peróxidos , Microambiente Tumoral
20.
Nanomaterials (Basel) ; 11(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34835753

RESUMO

Seawater splitting represents an inexpensive and attractive route for producing hydrogen, which does not require a desalination process. Highly active and durable electrocatalysts are required to sustain seawater splitting. Herein we report the phosphidation-based synthesis of a cobalt-iron-phosphate ((Co,Fe)PO4) electrocatalyst for hydrogen evolution reaction (HER) toward alkaline seawater splitting. (Co,Fe)PO4 demonstrates high HER activity and durability in alkaline natural seawater (1 M KOH + seawater), delivering a current density of 10 mA/cm2 at an overpotential of 137 mV. Furthermore, the measured potential of the electrocatalyst ((Co,Fe)PO4) at a constant current density of -100 mA/cm2 remains very stable without noticeable degradation for 72 h during the continuous operation in alkaline natural seawater, demonstrating its suitability for seawater applications. Furthermore, an alkaline seawater electrolyzer employing the non-precious-metal catalysts demonstrates better performance (1.625 V at 10 mA/cm2) than one employing precious metal ones (1.653 V at 10 mA/cm2). The non-precious-metal-based alkaline seawater electrolyzer exhibits a high solar-to-hydrogen (STH) efficiency (12.8%) in a commercial silicon solar cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...