Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8105, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062020

RESUMO

Structural and mechanistic studies on human odorant receptors (ORs), key in olfactory signaling, are challenging because of their low surface expression in heterologous cells. The recent structure of OR51E2 bound to propionate provided molecular insight into odorant recognition, but the lack of an inactive OR structure limited understanding of the activation mechanism of ORs upon odorant binding. Here, we determined the cryo-electron microscopy structures of consensus OR52 (OR52cs), a representative of the OR52 family, in the ligand-free (apo) and octanoate-bound states. The apo structure of OR52cs reveals a large opening between transmembrane helices (TMs) 5 and 6. A comparison between the apo and active structures of OR52cs demonstrates the inward and outward movements of the extracellular and intracellular segments of TM6, respectively. These results, combined with molecular dynamics simulations and signaling assays, shed light on the molecular mechanisms of odorant binding and activation of the OR52 family.


Assuntos
Odorantes , Receptores Odorantes , Humanos , Receptores Odorantes/metabolismo , Microscopia Crioeletrônica , Olfato , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/metabolismo
2.
Structure ; 31(1): 44-57.e6, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36525977

RESUMO

Neuropeptide Y (NPY) and its receptors are expressed in various human tissues including the brain where they regulate appetite and emotion. Upon NPY stimulation, the neuropeptide Y1 and Y2 receptors (Y1R and Y2R, respectively) activate GI signaling, but their physiological responses to food intake are different. In addition, deletion of the two N-terminal amino acids of peptide YY (PYY(3-36)), the endogenous form found in circulation, can stimulate Y2R but not Y1R, suggesting that Y1R and Y2R may have distinct ligand-binding modes. Here, we report the cryo-electron microscopy structures of the PYY(3-36)‒Y2R‒Gi and NPY‒Y2R‒Gi complexes. Using cell-based assays, molecular dynamics simulations, and structural analysis, we revealed the molecular basis of the exclusive binding of PYY(3-36) to Y2R. Furthermore, we demonstrated that Y2R favors G protein signaling over ß-arrestin signaling upon activation, whereas Y1R does not show a preference between these two pathways.


Assuntos
Neuropeptídeo Y , Peptídeo YY , Humanos , Neuropeptídeo Y/metabolismo , Peptídeo YY/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/química , Receptores de Neuropeptídeo Y/metabolismo , Microscopia Crioeletrônica , Transdução de Sinais , Receptores Acoplados a Proteínas G
3.
Acta Biomater ; 128: 393-407, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933694

RESUMO

Membrane protein structures provide atomic level insight into essential biochemical processes and facilitate protein structure-based drug design. However, the inherent instability of these bio-macromolecules outside lipid bilayers hampers their structural and functional study. Detergent micelles can be used to solubilize and stabilize these membrane-inserted proteins in aqueous solution, thereby enabling their downstream characterizations. Membrane proteins encapsulated in detergent micelles tend to denature and aggregate over time, highlighting the need for development of new amphiphiles effective for protein solubility and stability. In this work, we present newly-designed maltoside detergents containing a pendant chain attached to a glycerol-decorated tris(hydroxymethyl)methane (THM) core, designated GTMs. One set of the GTMs has a hydrophobic pendant (ethyl chain; E-GTMs), and the other set has a hydrophilic pendant (methoxyethoxylmethyl chain; M-GTMs) placed in the hydrophobic-hydrophilic interfaces. The two sets of GTMs displayed profoundly different behaviors in terms of detergent self-assembly and protein stabilization efficacy. These behaviors mainly arise from the polarity difference between two pendants (ethyl and methoxyethoxylmethyl chains) that results in a large variation in detergent conformation between these sets of GTMs in aqueous media. The resulting high hydrophobic density in the detergent micelle interior is likely responsible for enhanced efficacy of the M-GTMs for protein stabilization compared to the E-GTMs and a gold standard detergent DDM. A representative GTM, M-GTM-O12, was more effective for protein stability than some recently developed detergents including LMNG. This is the first case study investigating the effect of pendant polarity on detergent geometry correlated with detergent efficacy for protein stabilization. STATEMENT OF SIGNIFICANCE: This study introduces new amphiphiles for use as biochemical tools in membrane protein studies. We identified a few hydrophilic pendant-bearing amphiphiles such as M-GTM-O11 and M-GTM-O12 that show remarkable efficacy for membrane protein solubilization and stabilization compared to a gold standard DDM, the hydrophobic counterparts (E-GTMs) and a significantly optimized detergent LMNG. In addition, detergent results obtained in the current study reveals the effect of detergent pendant polarity on protein solubility and stability. Thus, the current study represents both significant chemical and conceptual advance. The detergent tools and design principle introduced here advance protein science and facilitate structure-based drug design and development.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Micelas , Conformação Molecular , Estabilidade Proteica , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...