Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16520, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303574

RESUMO

Lactic acid bacteria (LAB) present various benefits to humans; they play key roles in the fermentation of food and as probiotics. Acidic conditions are common to both LAB in the intestinal tract as well as fermented foods. Lactiplantibacillus plantarum is a facultative homofermentative bacterium, and lactic acid is the end metabolite of glycolysis. To characterize how L. plantarum responds to lactic acid, we investigated its transcriptome following treatment with hydrochloride (HCl) or dl-lactic acid at an early stage of growth. Bacterial growth was more attenuated in the presence of lactic acid than in the presence of HCl at the same pH range. Bacterial transcriptome analysis showed that the expression of 67 genes was significantly altered (log2FC > 2 or < 2). A total of 31 genes were up- or downregulated under both conditions: 19 genes in the presence of HCl and 17 genes in the presence of dl-lactic acid. The fatty acid synthesis-related genes were upregulated in both acidic conditions, whereas the lactate racemization-related gene (lar) was only upregulated following treatment with dl-lactic acid. In particular, lar expression increased following l-lactic acid treatment but did not increase following HCl or d-lactic acid treatment. Expression of lar and production of d-lactic acid were investigated with malic and acetic acid; the results revealed a higher expression of lar and production of d-lactic acid in the presence of malic acid than that in the presence of acetic acid.

2.
ACS Omega ; 8(4): 3896-3904, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743029

RESUMO

Kimchi is a traditional Korean salted spontaneous lactic acid bacteria (LAB)-fermented food made using various vegetables. Organic acids, free sugars, and amino acids are key metabolites produced during LAB fermentation that determine the taste and quality of kimchi. However, each metabolite is typically analyzed using an independent analytical method, which is time-consuming and expensive. Therefore, in this study, we developed a method based on LC-Q-Orbitrap MS using which 20 types of representative fermented kimchi metabolites were selected and simultaneously analyzed within 10 min. The established method was validated, and its detection and quantification limits, linearity, precision, and accuracy were found to satisfy the Association of Official Agricultural Chemists (AOAC) validation guidelines. The 20 metabolites were simultaneously extracted from kimchi with different degrees of fermentation and quantitatively analyzed using LC-Q-Orbitrap MS. These results were analyzed using linear discriminant analysis and heat mapping, and the metabolites were grouped into early, middle, and late stages of fermentation. Malic acid (6.518-7.701 mMol) was only present in the initial stage of fermentation, and l-phenylalanine rapidly increased from the middle stage (2.180 mMol) to late stage (4.770 mMol). Lactic acid, which is representative of the sour taste of kimchi, was detected in the middle stage and increased rapidly up to 74.452 mMol in the late stage. In summary, in this study, 20 major kimchi metabolites were accurately analyzed within 10 min and grouped based on the degree of fermentation. Therefore, the method established in this study accurately and rapidly provides information on kimchi consumption and fermentation that could be highly valuable to the kimchi industry and kimchi consumers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...