Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38853708

RESUMO

Background: Urban areas are unique ecosystems with stark differences in species abundance and composition compared with natural ecosystems. These differences can affect pathogen transmission dynamics, thereby altering zoonotic pathogen prevalence and diversity. In this study, we screened small mammals from natural and urban areas in the Netherlands for up to 19 zoonotic pathogens, including viruses, bacteria, and protozoan parasites. Materials and Methods: In total, 578 small mammals were captured, including wood mice (Apodemus sylvaticus), bank voles (Myodes glareolus), yellow-necked mice (Apodemus flavicollis), house mice (Mus musculus), common voles (Microtus arvalis), and greater white-toothed shrews (Crocidura russula). We detected a wide variety of zoonotic pathogens in small mammals from both urban and natural areas. For a subset of these pathogens, in wood mice and bank voles, we then tested whether pathogen prevalence and diversity were associated with habitat type (i.e., natural versus urban), degree of greenness, and various host characteristics. Results: The prevalence of tick-borne zoonotic pathogens (Borrelia spp. and Neoehrlichia mikurensis) was significantly higher in wood mice from natural areas. In contrast, the prevalence of Bartonella spp. was higher in wood mice from urban areas, but this difference was not statistically significant. Pathogen diversity was higher in bank voles from natural habitats and increased with body weight for both rodent species, although this relationship depended on sex for bank voles. In addition, we detected methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase/AmpC-producing Escherichia coli, and lymphocytic choriomeningitis virus for the first time in rodents in the Netherlands. Discussion: The differences between natural and urban areas are likely related to differences in the abundance and diversity of arthropod vectors and vertebrate community composition. With increasing environmental encroachment and changes in urban land use (e.g., urban greening), it is important to better understand transmission dynamics of zoonotic pathogens in urban environments to reduce potential disease risks for public health.

2.
Euro Surveill ; 29(25)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38904114

RESUMO

BackgroundTo be better prepared for emerging wildlife-borne zoonoses, we need to strengthen wildlife disease surveillance.AimThe aim of this study was to create a topical overview of zoonotic pathogens in wildlife species to identify knowledge gaps and opportunities for improvement of wildlife disease surveillance.MethodsWe created a database, which is based on a systematic literature review in Embase focused on zoonotic pathogens in 10 common urban wildlife mammals in Europe, namely brown rats, house mice, wood mice, common voles, red squirrels, European rabbits, European hedgehogs, European moles, stone martens and red foxes. In total, we retrieved 6,305 unique articles of which 882 were included.ResultsIn total, 186 zoonotic pathogen species were described, including 90 bacteria, 42 helminths, 19 protozoa, 22 viruses and 15 fungi. Most of these pathogens were only studied in one single animal species. Even considering that some pathogens are relatively species-specific, many European countries have no (accessible) data on zoonotic pathogens in these relevant animal species. We used the Netherlands as an example to show how this database can be used by other countries to identify wildlife disease surveillance gaps on a national level. Only 4% of all potential host-pathogen combinations have been studied in the Netherlands.ConclusionsThis database comprises a comprehensive overview that can guide future research on wildlife-borne zoonotic diseases both on a European and national scale. Sharing and expanding this database provides a solid starting point for future European-wide collaborations to improve wildlife disease surveillance.


Assuntos
Animais Selvagens , Zoonoses , Animais , Animais Selvagens/microbiologia , Europa (Continente)/epidemiologia , Zoonoses/epidemiologia , Bases de Dados Factuais , Humanos , Ratos , Sciuridae/microbiologia , Ouriços/microbiologia , Coelhos , Camundongos , Vigilância da População , Raposas/microbiologia , Raposas/parasitologia
3.
Clin Microbiol Infect ; 29(9): 1166-1173, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37207981

RESUMO

OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) infections impose a considerable burden on health systems, yet there is remarkable variation in the global incidence and epidemiology of MRSA. The MACOTRA consortium aimed to identify bacterial markers of epidemic success of MRSA isolates in Europe using a representative MRSA collection originating from France, the Netherlands and the United Kingdom. METHODS: Operational definitions of success were defined in consortium meetings to compose a balanced strain collection of successful and sporadic MRSA isolates. Isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing; genes were identified and phylogenetic trees constructed. Markers of epidemiological success were identified using genome-based time-scaled haplotypic density analysis and linear regression. Antimicrobial usage data from ESAC-Net was compared with national MRSA incidence data. RESULTS: Heterogeneity of MRSA isolate collections across countries hampered the use of a unified operational definition of success; therefore, country-specific approaches were used to establish the MACOTRA strain collection. Phenotypic antimicrobial resistance varied within related MRSA populations and across countries. In time-scaled haplotypic density analysis, fluoroquinolone, macrolide and mupirocin resistance were associated with MRSA success, whereas gentamicin, rifampicin and trimethoprim resistance were associated with sporadicity. Usage of antimicrobials across 29 European countries varied substantially, and ß-lactam, fluoroquinolone, macrolide and aminoglycoside use correlated with MRSA incidence. DISCUSSION: Our results are the strongest yet to associate MRSA antibiotic resistance profiles and antibiotic usage with the incidence of infection and successful clonal spread, which varied by country. Harmonized isolate collection, typing, resistance profiling and alignment with antimicrobial usage over time will aid comparisons and further support country-specific interventions to reduce MRSA burden.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Filogenia , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fluoroquinolonas , Testes de Sensibilidade Microbiana
4.
Epidemiol Infect ; 150: e203, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382385

RESUMO

Bacterial survival on, and interactions with, human skin may explain the epidemiological success of MRSA strains. We evaluated the bacterial counts for 27 epidemic and 31 sporadic MRSA strains on 3D epidermal models based on N/TERT cells (NEMs) after 1, 2 and 8 days. In addition, the expression of antimicrobial peptides (hBD-2, RNase 7), inflammatory cytokines (IL-1ß, IL-6) and chemokine IL-8 by NEMs was assessed using immunoassays and the expression of 43 S. aureus virulence factors was determined by a multiplex competitive Luminex assay. To explore donor variation, bacterial counts for five epidemic and seven sporadic MRSA strains were determined on 3D primary keratinocyte models (LEMs) from three human donors. Bacterial survival was comparable on NEMs between the two groups, but on LEMs, sporadic strains showed significantly lower survival numbers compared to epidemic strains. Both groups triggered the expression of immune factors. Upon interaction with NEMs, only the epidemic MRSA strains expressed pore-forming toxins, including alpha-hemolysin (Hla), gamma-hemolysin (HlgB), Panton-Valentine leucocidin (LukS) and LukED. Together, these data indicate that the outcome of the interaction between MRSA and human skin mimics, depends on the unique combination of bacterial strain and host factors.


Assuntos
Interações Hospedeiro-Patógeno , Staphylococcus aureus Resistente à Meticilina , Pele , Humanos , Pele/microbiologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Contagem de Colônia Microbiana , Peptídeos Antimicrobianos/análise , Viabilidade Microbiana , Citocinas/análise , Quimiocinas CC/análise
5.
Sci Rep ; 12(1): 19738, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396730

RESUMO

Nasal decolonization procedures against the opportunistic pathogen Staphylococcus aureus rely on topical antimicrobial drug usage, whose impact on the nasal microbiota is poorly understood. We examined this impact in healthy S. aureus carriers and noncarriers. This is a prospective interventional cohort study of 8 S. aureus carriers and 8 noncarriers treated with nasal mupirocin and chlorhexidine baths. Sequential nasal swabs were taken over 6 months. S. aureus was detected by quantitative culture and genotyped using spa typing. RNA-based 16S species-level metabarcoding was used to assess the living microbial diversity. The species Dolosigranulum pigrum, Moraxella nonliquefaciens and Corynebacterium propinquum correlated negatively with S. aureus carriage. Mupirocin treatment effectively eliminated S. aureus, D. pigrum and M. nonliquefaciens, but not corynebacteria. S. aureus recolonization in carriers occurred more rapidly than recolonization by the dominant species in noncarriers (median 3 vs. 6 months, respectively). Most recolonizing S. aureus isolates had the same spa type as the initial isolate. The impact of mupirocin-chlorhexidine treatment on the nasal microbiota was still detectable after 6 months. S. aureus recolonization predated microbiota recovery, emphasizing the strong adaptation of this pathogen to the nasal niche and the transient efficacy of the decolonization procedure.


Assuntos
Microbiota , Infecções Estafilocócicas , Humanos , Mupirocina/farmacologia , Mupirocina/uso terapêutico , Staphylococcus aureus , Clorexidina/farmacologia , Estudos Prospectivos , Estudos de Coortes , Portador Sadio/tratamento farmacológico , Portador Sadio/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Microbiota/genética
6.
Microbiol Spectr ; 10(5): e0061522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972129

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) clusters are considered epidemic or nonepidemic based on their ability to spread effectively. Successful transmission could be influenced by dehydration tolerance. Current methods for determination of dehydration tolerance lack accuracy. Here, a climate-controlled in vitro dehydration assay using isothermal microcalorimetry (IMC) was developed and linked with mathematical modeling to determine survival of 44 epidemic versus 54 nonepidemic MRSA strains from France, the United Kingdom, and the Netherlands after 1 week of dehydration. For each MRSA strain, the growth parameters time to end of first growth phase (tmax [h]) and maximal exponential growth rate (µm) were deduced from IMC data for 3 experimental replicates, 3 different starting inocula, and before and after dehydration. If the maximal exponential growth rate was within predefined margins (±36% of the mean), a linear relationship between tmax and starting inoculum could be utilized to predict log reduction after dehydration for individual strains. With these criteria, 1,330 of 1,764 heat flow curves (data sets) (75%) could be analyzed to calculate the post-dehydration inoculum size, and thus the log reduction due to dehydration, for 90 of 98 strains (92%). Overall reduction was ~1 log after 1 week. No difference in dehydration tolerance was found between the epidemic and nonepidemic strains. Log reduction was negatively correlated with starting inoculum, indicating better survival of higher inocula. This study presents a framework to quantify bacterial survival. MRSA strains showed great capacity to persist in the environment, irrespective of epidemiological success. This finding strengthens the need for effective surface cleaning to contain MRSA transmission. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of infections globally. While some MRSA clusters have spread worldwide, others are not able to disseminate successfully beyond certain regions despite frequent introduction. Dehydration tolerance facilitates transmission in hospital environments through enhanced survival on surfaces and fomites, potentially explaining differences in transmission success between MRSA clusters. Unfortunately, the currently available techniques to determine dehydration tolerance of cluster-forming bacteria like S. aureus are labor-intensive and unreliable due to their dependence on quantitative culturing. In this study, bacterial survival was assessed in a newly developed assay using isothermal microcalorimetry. With this technique, the effect of drying can be determined without the disadvantages of quantitative culturing. In combination with a newly developed mathematical algorithm, we determined dehydration tolerance of a large number of MRSA strains in a systematic, unbiased, and robust manner.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Infecções Estafilocócicas/microbiologia , Desidratação , França , Antibacterianos/farmacologia
7.
Int J Antimicrob Agents ; 59(3): 106538, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091055

RESUMO

Multinational surveillance programmes for methicillin-resistant Staphylococcus aureus (MRSA) are dependent on national structures for data collection. This study aimed to capture the diversity of national MRSA surveillance programmes and to propose a framework for harmonisation of MRSA surveillance. The International Society of Antimicrobial Chemotherapy (ISAC) MRSA Working Group conducted a structured survey on MRSA surveillance programmes and organised a webinar to discuss the programmes' strengths and challenges as well as guidelines for harmonisation. Completed surveys represented 24 MRSA surveillance programmes in 16 countries. Several countries reported separate epidemiological and microbiological surveillance. Informing clinicians and national policy-makers were the most common purposes of surveillance. Surveillance of bloodstream infections (BSIs) was present in all programmes. Other invasive infections were often included. Three countries reported active surveillance of MRSA carriage. Methodology and reporting of antimicrobial susceptibility, virulence factors, molecular genotyping and epidemiological metadata varied greatly. Current MRSA surveillance programmes rely upon heterogeneous data collection systems, which hampers international epidemiological monitoring and research. To harmonise MRSA surveillance, we suggest improving the integration of microbiological and epidemiological data, implementation of central biobanks for MRSA isolate collection, and inclusion of a representative sample of skin and soft-tissue infection cases in addition to all BSI cases.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Monitoramento Epidemiológico , Humanos , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico
8.
PLoS One ; 12(11): e0187239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095871

RESUMO

BACKGROUND: Close contact between pets and owners provides the opportunity for transmission of antimicrobial resistant organisms like extended-spectrum beta-lactamase (ESBL)/AmpC beta-lactamase (AmpC)-producing Enterobacteriaceae, posing a risk to public health. OBJECTIVES: To investigate whether raw feed is a risk factor for household cats to shed ESBL-producing Enterobacteriaceae, a cohort study was designed. Additionally, raw and non-raw commercial pet food products were screened for the presence of ESBL-producing Enterobacteriaceae. METHODS: Weekly fecal samples of 17 cats in the control group and 19 cats in the exposed group were collected for three weeks and analyzed for the presence of ESBL-producing Enterobacteriaceae. Questionnaires were obtained to determine additional risk factors. Fecal samples were cultured on MacConkey agar supplemented with 1 mg/L cefotaxime. PCR and sequence analysis was used for screening for ESBL genes in suspected isolates. Pet food samples were cultured in LB broth supplemented with 1 mg/L cefotaxime and processed as described above. RESULTS: In the cohort study, ESBL-producing bacteria were isolated from 3 of 51 (5.9%) samples in the control group compared to 37 of 57 (89.5%) samples in the exposed group. A significant association was found between ESBL shedding and feeding raw pet food products (OR = 31.5). No other risk factors were identified in this study. ESBL-producing Enterobacteriaceae were isolated from 14 of 18 (77.8%) raw pet food products and 0 of 35 non-raw pet food products. CONCLUSIONS: This study shows a strong association between shedding of ESBL-producing bacteria in household cats and feeding raw pet food. Raw pet food was often contaminated with ESBL-producing Enterobacteriaceae.


Assuntos
Ração Animal , Infecções por Enterobacteriaceae/fisiopatologia , Animais de Estimação , Animais , Gatos , Fatores de Risco
9.
Antimicrob Agents Chemother ; 59(6): 3117-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25779568

RESUMO

A longitudinal study was performed to (i) investigate the continuity of shedding of extended-spectrum-beta-lactamase (ESBL)-producing Enterobacteriaceae in dogs without clinical signs, (ii) identify dominant plasmid-mediated ESBL genes, and (iii) quantify ESBL-producing Enterobacteriaceae in feces. Fecal samples from 38 dogs were collected monthly for 6 months. Additional samples were collected from 7 included dogs on a weekly basis for 6 weeks. Numbers of CFU per gram of feces for non-wild-type Enterobacteriaceae were determined by using MacConkey agar supplemented with 1 mg/liter cefotaxime (MCC), and those for total Enterobacteriaceae were determined by using MacConkey agar. Cefotaxime-resistant isolates were screened by PCR and sequence analysis for the presence of bla(CTX-M), bla(CMY), bla(SHV), bla(OXA), and bla(TEM) gene families. Bacterial species were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. PCR-negative isolates were tested by a double-disk synergy test for enhanced AmpC expression. A total of 259 samples were screened, and 126 samples were culture positive on MCC, resulting in 352 isolates, 327 of which were Escherichia coli. Nine dogs were continuously positive during this study, and 6 dogs were continuously negative. Monthly or weekly shifts in fecal shedding were observed for 23 dogs. Genotyping showed a large variety of ESBL genes and gene combinations at single and multiple consecutive sampling moments. The ESBL genes bla(CTX-M-1), bla(CTX-M-14), bla(CTX-M-15), bla(SHV-12), and bla(CMY-2) were most frequently found. The mean number of CFU of non-wild-type Enterobacteriaceae was 6.11 × 10(8) CFU/g feces. This study showed an abundance of ESBL-producing Enterobacteriaceae in dogs in the Netherlands, mostly in high concentrations. Fecal shedding was shown to be highly dynamic over time, which is important to consider when studying ESBL epidemiology.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/enzimologia , Enterobacteriaceae/patogenicidade , beta-Lactamases/metabolismo , Animais , Cães , Genótipo , Estudos Longitudinais , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...