Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(1): 1301-1313, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33351602

RESUMO

The successful covalent attachment, via copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), of alkyne-functionalized nickel(II) and copper(II) macrocyclic complexes onto azide (N3)-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films on ITO-coated glass electrodes is reported. To investigate the surface attachment of the selected metal complexes, which are analogues of the cobalt-based complex previously reported to be a molecular catalyst for hydrogen evolution, first, three different PEDOT films were formed by electropolymerization of pure PEDOT or pure N3-PEDOT, and last, 1:2N3-PEDOT:PEDOT were formed by co-polymerizing a 1:4 mixture of N3-EDOT:EDOT monomers. The successful surface immobilization of the complexes on the latter two azide-functionalized films, by CuAAC, was confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemistry as well as by UV-vis-NIR and resonance Raman spectroelectrochemistry. The ratio between the N3 groups, and hence, the number of surface-attached metal complexes after CuAAC functionalization, in pristine N3-PEDOT versus 1:2N3-PEDOT:PEDOT is expected to be 3:1 and seen to be 2.86:1 with a calculated surface coverage of 3.28 ± 1.04 and 1.15 ± 0.09 nmol/cm2, respectively. The conversion, to the metal complex attached films, was lower for the N3-PEDOT films (Ni 74%, Cu 76%) than for the copolymer 1:2N3-PEDOT:PEDOT films (Ni 83%, Cu 91%) due to the former being more sterically congested. The Raman and UV-vis-NIR results were simulated using density functional theory (DFT) and time-dependent DFT (TD-DFT), respectively, and showed good agreement with the experimental data. Importantly, the spectroelectrochemical behavior of both anchored metal complexes is analogous to that of the free metal complexes in solution. This proves that PEDOT films are promising conducting scaffolds for the covalent immobilization of metal complexes, as the existing electrochromic features of the complexes are preserved on immobilization, which is important for applications in electrocatalytic proton and carbon dioxide reduction, optoelectronics, and sensing.

2.
Macromol Rapid Commun ; 40(10): e1800749, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30512205

RESUMO

Here, the synthesis of a novel poly(pyrrole phenylene) (PpyP) that is both modular in ways of functionalization and soluble in organic solvents is reported, and therefore solution processable. This is achieved through the functionalization of the side-chain substituents in pyrrole phenylene (PyP) repeating units. t Butyl acrylate brushes are first grafted through atom transfer radical polymerization from one type of PyP, followed by oxidative chemical co-polymerization of the grafted PyP with a PyP bearing different side chains-either an azide or a methoxy moiety, resulting in a soluble PpyP where solubility is not dopant-dependent. Successful post-polymerization modification through "click" chemistry and post-polymerization processing via electrospinning are also demonstrated. Additionally, performed computational calculations indicate planarity of the novel polyrrole phenylene monomers and ionisation potentials that favor α-α bond formation during their polymerization.


Assuntos
Química Click , Polímeros/síntese química , Pirróis/síntese química , Acrilatos , Azidas/química , Polimerização , Polímeros/química , Pirróis/química , Solubilidade , Propriedades de Superfície
3.
Soft Matter ; 14(33): 6875-6882, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30083686

RESUMO

Electronic graft copolymers with conjugated polymer backbones are emerging as promising materials for various organic electronics. These materials combine the advantages of organic electronic materials, such as molecular tunability of opto-electronic and electrochemical properties, with solution processability and other 'designer' physical and mechanical properties imparted through the addition of grafted polymer side chains. Future development of such materials with complex molecular architecture requires a better understanding of the effect of molecular parameters, such as side chain length, on the structure and, in turn, on the electronic properties. In this study, poly(thiophene)-graft-poly(acrylate urethane) (PTh-g-PAU) was examined as a model system and we investigate the effect of side chain length on the overall shape and size in solution. Furthermore, the changes in the swelling behaviour of the graft copolymer thin films help in understanding their electrochemical redox properties.

4.
Acc Chem Res ; 51(7): 1581-1589, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29897228

RESUMO

The field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa. However, the difference in the physical nature of soft biological elements and rigid electronic materials calls for new conductive or electroactive materials with added biomimetic properties that can bridge the gap. Soft electronics that utilize organic materials, such as conjugated polymers, can bring many important features to bioelectronics. Among the many advantages of conjugated polymers, the ability to modulate the biocompatibility, solubility, functionality, and mechanical properties through side chain engineering can alleviate the issues of mechanical mismatch and provide better interface between the electronics and biological elements. Additionally, conjugated polymers, being both ionically and electrically conductive through reversible doping processes provide means for direct sensing and stimulation of biological processes in cells, tissues, and organs. In this Account, we focus on our recent progress in molecular engineering of conjugated polymers with tunable biomimetic properties, such as biocompatibility, responsiveness, stretchability, self-healing, and adhesion. Our approach is general and versatile, which is based on functionalization of conjugated polymers with long side chains, commonly polymeric or biomolecules. Applications for such materials are wide-ranging, where we have demonstrated conductive, stimuli-responsive antifouling, and cell adhesive biointerfaces that can respond to external stimuli such as temperature, salt concentration, and redox reactions, the processes that in turn modify and reversibly switch the surface properties. Furthermore, utilizing the advantageous chemical, physical, mechanical and functional properties of the grafts, we progressed into grafting of the long side chains onto conjugated polymers in solution, with the vision of synthesizing solution-processable conjugated graft copolymers with biomimetic functionalities. Examples of the developed materials to date include rubbery and adhesive photoluminescent plastics, biomolecule-functionalized electrospun biosensors, thermally and dually responsive photoluminescent conjugated polymers, and tunable self-healing, adhesive, and stretchable strain sensors, advanced functional biocidal polymers, and filtration membranes. As outlined in these examples, the applications of these biomimetic, conjugated polymers are still in the development stage toward truly printable, organic bioelectronic devices. However, in this Account, we advocate that molecular engineering of conjugated polymers is an attractive approach to a versatile class of organic electronics with both ionic and electrical conductivity as well as mechanical properties required for next-generation bioelectronics.


Assuntos
Materiais Biomiméticos/química , Polímeros/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biomiméticos/síntese química , Engenharia Química , Condutividade Elétrica , Eletrônica Médica/métodos , Maleabilidade , Polímeros/síntese química , Dispositivos Eletrônicos Vestíveis
5.
Biomacromolecules ; 19(5): 1456-1468, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29641906

RESUMO

This research focuses on the design of biocompatible materials/scaffold suitable for use for tissue engineering. Porous fiber mats were produced through electrospinning of polythiophene phenylene (PThP) conducting polymers blended with poly(lactide- co-glycolic acid) (PLGA). A peptide containing an arginylglycylaspartic acid (RGD) fragment was synthesized using solid phase peptide synthesis and subsequently grafted onto a PThP polymer using azide-alkyne "click" chemistry. The obtained RGD functionalized PThP was also electrospun into a fiber mat. The electrospun mats' morphology, roughness and stiffness were studied by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM) and their electroactivity by cyclic voltammetry. The fibers show excellent cytocompatibility in culture assays with human dermal fibroblasts-adult (HDFa) and human epidermal melanocytes-adult (HEMa) cells. The electrospun fibers' roughness and stiffness changed after exposing the fiber mats to the cell culture medium (measured in dry state), but these changes did not affect the cell proliferation. The cytocompatibility of our porous scaffolds was established for their applicability as cell culture scaffolds by means of investigating mitochondrial activity of HDFa and HEMa cells on the scaffolds. The results revealed that the RGD moieties containing PThP scaffolds hold a promise in biomedical applications, including skin tissue engineering.


Assuntos
Materiais Biocompatíveis/síntese química , Alicerces Teciduais/química , Materiais Biocompatíveis/efeitos adversos , Linhagem Celular , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Melanócitos/efeitos dos fármacos , Oligopeptídeos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tiofenos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/efeitos adversos
6.
Biosens Bioelectron ; 97: 128-135, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28582708

RESUMO

We present a versatile and facile procedure for the immobilisation of bioprobe molecules to an electrochemical sensing element. We eliminate lengthy preparation procedures for direct functionalisation of electrode surfaces by pre-attaching probe molecules to carboxylic acid bearing termonomers of pyrrole phenylenes or thiophene phenylenes. We demonstrate that these conjugates can be electrodeposited at low potentials to form nano-scale porous, electroactive conducting polymer films, exposing the bioprobe and retaining activity and specificity for binding, exemplified here with DNA sensors. The electrochemical reaction impedance for Fe(CN)63-/4- on oligonucleotide-modified electrodes showed remarkable (down to aM) detection sensitivity for target DNA sequences present in solution. Cross-sensitivity to non-complementary target sequences is small and multi-target arrays are easily made. There is no need for labelling of either probe or target oligonucleotide.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Técnicas Eletroquímicas/métodos , Sondas de Oligonucleotídeos/química , Pirróis/química , Tiofenos/química , Ácidos Carboxílicos/química , Eletrodos , Galvanoplastia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...