Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234056

RESUMO

Poly-dichloro-para-xylylene (parylene-C) film is formed through a chemical vapor deposition process, where monomeric gases are polymerized on the target surface at room temperature and are used as transparent insulating coating films. The thin parylene-C films exhibit uniform conformal layers even when deposited on substrates or surfaces with fine cracks, structures, and bumps. However, the film is highly transparent in the visible range (transmittance > 90%); thus, it is difficult to visually identify, inspect the coating process and check for any defects when used as an insulation film. Some reports have demonstrated the deposition of visible (hazy) parylene films through the control of the vaporization or pyrolysis of the parylene-C powder and sublimed dimers, respectively. Even though these films have been applied as device substrates and light extraction layers in organic light-emitting diodes (OLEDs), their optical and electrical characteristics have not been extensively explored, especially for their applications as insulation coatings. In this study, the characteristics of visible parylene films produced by tuning the ratio of dimer to monomer gases via the adjustments of the pyrolysis temperature are analyzed with electrical and optical methods. Parylene-C films deposited within the pyrolysis temperature of 400−700 °C exhibited a haze range of 10−90%. A relative reflectance of 18.8% at 550 nm of the visible light region was achieved in the visible parylene film deposited with a pyrolysis temperature of 400 °C. Resistivity in the order of 1010 Ω cm was achieved for the visible parylene films measured with the transmission line measurement (TLM) method. The films can be applied in advanced insulation coatings for various optical systems and electronic devices.

2.
Materials (Basel) ; 15(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955139

RESUMO

Sputtering technique involves the use of plasma that locally heats surfaces of substrates during the deposition of atoms or molecules. This modifies the microstructure by increasing crystallinity and the adhesive properties of the substrate. In this study, the effect of sputtering on the microstructure of parylene-C was investigated in an aluminum nitride (AlN)-rich plasma environment. The sputtering process was carried out for 30, 45, 90 and 120 min on a 5 µm thick parylene-C film. Topography and morphology analyses were conducted on the parylene-C/AlN bilayers. Based on the experimental data, the results showed that the crystallinity of parylene-C/AlN bilayers was increased after 30 min of sputtering and remained saturated for 120 min. A scratch-resistance test conducted on the bilayers depicted that a higher force is required to delaminate the bilayers on top of the substrate. Thus, the adhesion properties of parylene-C/AlN bilayers were improved on glass substrate by about 17% during the variation of sputtering time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...