Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404597, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975985

RESUMO

Photomultiplication (PM)-type organic photodetectors (OPDs), which typically form a homogeneous distribution (HD) of n-type dopants in a p-type polymer host (HD PM-type OPDs), have achieved a breakthrough in device responsivity by surpassing a theoretical limit of external quantum efficiency (EQE). However, they face limitations in higher dark current and slower dynamic characteristics compared to p-n heterojunction (p-n HJ) OPDs due to inherent long lifetime of trapped electrons. To overcome this, we have developed a new PM-type OPD that demonstrates ultrafast dynamic properties through a vertical phase separation (VPS) strategy between the p-type polymer (host) and n-type acceptor (dopant), referred to as VPS PM-type OPDs. Notably, VPS PM-type OPDs show a remarkable increase (by three orders of magnitude) in -3 dB cut-off frequency (120 kHz) and over a 200-fold faster response time (rising time = 4.8 µs, falling time = 8.3 µs) compared to HD PM-type OPDs, while maintaining high EQE of 1,121% and specific detectivity of 2.53 × 1013 Jones at -10 V. The VPS PM OPD represents a groundbreaking advancement by demonstrating the coexistence of p-n HJ and PM modes within a single photoactive layer for the first time. This innovative approach holds the potential to enhance both static and dynamic properties of OPDs. This article is protected by copyright. All rights reserved.

2.
Adv Sci (Weinh) ; 11(7): e2305349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064157

RESUMO

In this study, it is demonstrated that CsPbBr3 perovskite nanocrystals (NCs) can enhance the overall performances of photomultiplication-type organic photodiodes (PM-OPDs). The proposed approach enables the ionic-polarizable CsPbBr3 NCs to be evenly distributed throughout the depletion region of Schottky junction interface, allowing the entire trapped electrons within the depletion region to be stabilized, in contrast to previously reported interface-limited strategies. The optimized CsPbBr3 -NC-embedded poly(3-hexylthiophene-diyl)-based PM-OPDs exhibit exceptionally high external quantum efficiency, specific detectivity, and gain-bandwidth product of 2,840,000%, 3.97 × 1015 Jones, and 2.14 × 107  Hz, respectively. 2D grazing-incidence X-ray diffraction analyses and drift-diffusion simulations combined with temperature-dependent J-V characteristic analyses are conducted to investigate the physics behind the success of CsPbBr3 -NC-embedded PM-OPDs. The results show that the electrostatic interactions generated by the ionic polarization of NCs effectively stabilize the trapped electrons throughout the entire volume of the photoactive layer, thereby successfully increasing the effective energy depth of the trap states and allowing efficient PM mechanisms. This study demonstrates how a hybrid-photoactive-layer approach can further enhance PM-OPD when the functionality of inorganic inclusions meets the requirements of the target device.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38032313

RESUMO

Suppressing the dark current density (Jd) while maintaining sufficient charge transport is important for improving the specific detectivity (D*) and dynamic characteristics of organic photodetectors (OPDs). In this study, we synthesized three novel small-molecule acceptors (SMAs) densely surrounded by insulating alkyl side chains to minimize the Jd in OPDs. Introducing trialkylated N-annulated perylene diimide as a terminal moiety to the alkylated π-conjugated core structure was highly efficient in suppressing Jd in the devices, resulting in an extremely low Jd of 4.60 × 10-11 A cm-2 and 10-100 times improved D* values in the devices. In addition, SMAs with a geometrically aligned backbone structure exhibited better intermolecular ordering in the blended films, resulting in 3-10 times as high responsivity (R) values in the OPDs. Outstanding OPD performances with a D* of 8.09 × 1012 Jones, -3 dB cutoff frequency of 205.2 kHz, and rising response time of 16 µs were achieved under a 530 nm illumination in photoconductive mode. Geometrically aligned core-terminal SMAs densely surrounded by insulating alkyl side chains are promising for improving the static and dynamic properties of OPDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...