Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214841

RESUMO

Breeding hybrids with maximum heterosis requires efficient cross-pollination and an improved male sterility system. Renewed efforts have been made to dissect the phenotypic variation and genetic basis of hybrid floral traits, although the potential of tailoring the appropriate flower design on seed setting is less known. To this end, elite wheat genotypes were crossed using a chemical hybridizing agent at different doses. A total of 23 hybrids were developed from a partial diallel design; and planted in an alpha lattice design with their parents at two locations in Morocco, for two years, to evaluate for yield components, heterosis and combining abilities. The 13.5 L ha-1 dose induced a maximum level of sterility (95%) and seed set showed large phenotypic variation and high heritability. In parallel, seed set showed tight correlation with pollen mass (0.97), visual anther extrusion (0.94) and pollen shedding (0.91) (p < 0.001), allowing direct selection of the associated traits. Using the combined data, mid-parent heterosis ranges were -7.64-14.55% for biomass (BM), -8.34-12.51% for thousand kernel weight (TKW) and -5.29-26.65% for grain yield (YLD); while best-parent heterosis showed ranges of -11.18-7.20%, -11.35-11.26% and -8.27-24.04% for BM, TKW and YLD, respectively. The magnitude of general combining ability (GCA) variance was greater than the specific combining ability (SCA) variance suggesting a greater additive gene action for BM, TKW and YLD. The favorable GCA estimates showed a simple method to predict additive effects contributing to high heterosis and thus could be an effective approach for the selection of promising parents in early generations.

2.
G3 (Bethesda) ; 9(1): 125-133, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30420469

RESUMO

Genome-wide single nucleotide polymorphism (SNP) variation allows for the capture of haplotype structure in populations and prediction of unobserved genotypes based on inferred regions of identity-by-descent (IBD). Here we have used a first-generation wheat haplotype map created by targeted re-sequencing of low-copy genomic regions in the reference panel of 62 lines to impute marker genotypes in a diverse panel of winter wheat cultivars from the U.S. Great Plains. The IBD segments between the reference population and winter wheat cultivars were identified based on SNP genotyped using the 90K iSelect wheat array and genotyping by sequencing (GBS). A genome-wide association study and genomic prediction of resistance to stripe rust in winter wheat cultivars showed that an increase in marker density achieved by imputation improved both the power and precision of trait mapping and prediction. The majority of the most significant marker-trait associations belonged to imputed genotypes. With the vast amount of SNP variation data accumulated for wheat in recent years, the presented imputation framework will greatly improve prediction accuracy in breeding populations and increase resolution of trait mapping hence, facilitate cross-referencing of genotype datasets available across different wheat populations.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Temperatura Baixa , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Haplótipos/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
3.
Proc Natl Acad Sci U S A ; 110(20): 8057-62, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630259

RESUMO

Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.


Assuntos
Ploidias , Triticum/genética , Alelos , Produtos Agrícolas/genética , Frequência do Gene , Genes de Plantas , Variação Genética , Genoma de Planta , Genótipo , Haplótipos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
4.
Theor Appl Genet ; 126(2): 335-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23052020

RESUMO

Fall-sown barley will be increasingly important in the era of climate change due to higher yield potential and efficient use of water resources. Resistance/tolerance to abiotic stresses will be critical, and foremost among the abiotic stresses is low temperature. Simultaneous gene discovery and breeding will accelerate the development of agronomically relevant fall-sown barley germplasm with resistance to low temperature. We developed two doubled haploid mapping populations using two lines from the University of Nebraska (NE) and one line from Oregon State University (OR): NB3437f/OR71 (facultative × facultative) and NB713/OR71 (winter × facultative). Both were genotyped with a custom 384 oligonucleotide pool assay (OPA). QTL analyses were performed for low temperature tolerance (LTT) and vernalization sensitivity (VS). The role of VRN-H2 in VS was confirmed and a novel alternative winter allele at VRN-H3 was discovered in the Nebraska germplasm. FR-H2 was identified as a probable determinant of LTT and a new QTL, FR-H3, was discovered on chromosome 1H that accounted for up to 48 % of the phenotypic variation in field survival at St. Paul, MN, USA. The discovery of FR-H3 is a significant advancement in barley LTT genetics and will assist in developing the next generation of fall-sown varieties.


Assuntos
Adaptação Biológica/genética , Temperatura Baixa , Genes de Plantas/genética , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Genótipo , Nebraska , Oregon , Fenótipo , Estações do Ano
5.
BMC Genomics ; 11: 727, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21190581

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. RESULTS: Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (F(ST)) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated F(ST) were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). CONCLUSIONS: Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.


Assuntos
Genética Populacional , Genoma de Planta/genética , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Estações do Ano , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Análise por Conglomerados , Flores/genética , Flores/fisiologia , Frequência do Gene/genética , Genótipo , Dinâmica Populacional , Análise de Componente Principal , Locos de Características Quantitativas/genética
6.
Genome ; 47(2): 292-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060581

RESUMO

Cultivated rye (Secale cereale L., 2n = 2x = 14, RR) is an important source of genes for insect and disease resistance in wheat (Triticum aestivum L., 2n = 6x = 42). Rye chromosome arm 1RS of S. cereale 'Kavkaz' originally found as a 1BL.1RS translocation, carries genes for disease resistance (e.g., Lr26, Sr31, Yr9, and Pm8), while 1RS of the S. cereale 'Amigo' translocation (1RSA) carries a single resistance gene for greenbug (Schizaphis graminum Rondani) biotypes B and C and also carries additional disease-resistance genes. The purpose of this research was to identify individual plants that were recombinant in the homologous region of.1AL.1RSV and 1AL.1RSA using both molecular and phenotypic markers. Secale cereale 'Nekota' (1AL.1RSA) and S. cereale 'Pavon 76' (1AL.1RSV) were mated and the F1 was backcrossed to 'Nekota' (1AL.1AS) to generate eighty BC1F2:3 families (i.e., ('Nekota' 1AL.1RSA x 'Pavon 76' 1AL.1RSV) x 'Nekota' 1AL.1AS). These families were genotyped using the secalin-gliadin grain storage protein banding pattern generated with polyacrylamide gel electrophoresis to discriminate 1AL.1AS/1AL.1RS heterozygotes from the 1AL.1RSA+V and 1AL.1AS homozygotes. Segregation of the secalin locus and PCR markers based on the R173 family of rye specific repeated DNA sequences demonstrated the presence of recombinant 1AL.1RSA+V families. Powdery mildew (Blumeria graminis) and greenbug resistance genes on the recombinant 1RSA+V arm were mapped in relation to the Sec-1 locus, 2 additional protein bands, 3 SSRs, and 13 RFLP markers. The resultant linkage map of 1RS spanned 82.4 cM with marker order and spacing showing reasonable agreement with previous maps of 1RS. Fifteen markers lie within a region of 29.7 cM next to the centromere, yet corresponded to just 36% of the overall map length. The map position of the RFLP marker probe mwg68 was 10.9 cM distal to the Sec-1 locus and 7.8 cM proximal to the powdery mildew resistance locus. The greenbug resistance gene was located 2.7 cM proximal to the Sec-1 locus.


Assuntos
Cromossomos de Plantas , Genes de Plantas , Doenças das Plantas/genética , Secale/genética , Triticum/genética , Animais , Afídeos/patogenicidade , Ascomicetos , Mapeamento Cromossômico , Impressões Digitais de DNA , Endossomos/genética , Ligação Genética , Marcadores Genéticos , Gliadina/análise , Gliadina/genética , Glutens , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Polimorfismo de Fragmento de Restrição , Recombinação Genética , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...