Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(2): 101545, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971705

RESUMO

Alkylation of DNA and RNA is a potentially toxic lesion that can result in mutations and even cell death. In response to alkylation damage, K63-linked polyubiquitin chains are assembled that localize the Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3-Activating Signal Cointegrator 1 Complex Subunit (ASCC) repair complex to damage sites in the nucleus. The protein ASCC2, a subunit of the ASCC complex, selectively binds K63-linked polyubiquitin chains via its coupling of ubiquitin conjugation to ER degradation (CUE) domain. The basis for polyubiquitin-binding specificity was unclear, because CUE domains in other proteins typically bind a single ubiquitin and do not discriminate among different polyubiquitin linkage types. We report here that the ASCC2 CUE domain selectively binds K63-linked diubiquitin by contacting both the distal and proximal ubiquitin. The ASCC2 CUE domain binds the distal ubiquitin in a manner similar to that reported for other CUE domains bound to a single ubiquitin, whereas the contacts with the proximal ubiquitin are unique to ASCC2. Residues in the N-terminal portion of the ASCC2 α1 helix contribute to the binding interaction with the proximal ubiquitin of K63-linked diubiquitin. Mutation of residues within the N-terminal portion of the ASCC2 α1 helix decreases ASCC2 recruitment in response to DNA alkylation, supporting the functional significance of these interactions during the alkylation damage response. Our study reveals the versatility of CUE domains in ubiquitin recognition.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Reparo do DNA , Proteínas Nucleares , Poliubiquitina , Ubiquitina , Ubiquitinas , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , DNA/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ligação Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
2.
Microb Ecol ; 81(1): 180-192, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32638043

RESUMO

Bivalves have ecological and economic importance but information regarding their associated microbiomes is lacking. As suspension feeders, bivalves capture and ingest a myriad of particles, and their digestive organs have a high throughput of particle-associated microbiota. To better understand the complement of transient and resident microbial communities, standard methods need to be developed. For example, fecal sampling could represent a convenient proxy for the gut microbiome and is simple, nondestructive, and allows for sampling of individuals through time. The goal of this study was to evaluate fecal sampling as a reliable proxy for gut microbiome assessment in the blue mussel (Mytilus edulis). Mussels were collected from the natural environment and placed into individual sterilized microcosms for 6 h to allow for fecal egestion. Feces and gut homogenates from the same individuals were sampled and subjected to 16S rRNA gene amplicon sequencing. Fecal communities of different mussels resembled each other but did not resemble gut communities. Fecal communities were significantly more diverse, in terms of amplicon sequence variant (ASV) richness and evenness, than gut communities. Results suggested a mostly transient nature for fecal microbiota. Nonetheless, mussels retained a distinct resident microbial community in their gut after fecal egestion that was dominated by ASVs belonging to Mycoplasma. The use of fecal sampling as a nondestructive substitute for direct sampling of the gut is strongly discouraged. Experiments that aim to study solely resident bivalve gut microbiota should employ an egestion period prior to gut sampling to allow time for voidance of transient microbes.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal/genética , Mytilus edulis/microbiologia , Estômago/microbiologia , Animais , Microbiologia de Alimentos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...