Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(20): eadn0895, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758793

RESUMO

SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), a central plant metabolic sensor kinase, phosphorylates its target proteins, triggering a global shift from anabolism to catabolism. Molecular modeling revealed that upon binding of KIN10 to GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1), KIN10's activation T-loop reorients into GRIK1's active site, enabling its phosphorylation and activation. Trehalose 6-phosphate (T6P) is a proxy for cellular sugar status and a potent inhibitor of SnRK1. T6P binds to KIN10, a SnRK1 catalytic subunit, weakening its affinity for GRIK1. Here, we investigate the molecular details of T6P inhibition of KIN10. Molecular dynamics simulations and in vitro phosphorylation assays identified and validated the T6P binding site on KIN10. Under high-sugar conditions, T6P binds to KIN10, blocking the reorientation of its activation loop and preventing its phosphorylation and activation by GRIK1. Under these conditions, SnRK1 maintains only basal activity levels, minimizing phosphorylation of its target proteins, thereby facilitating a general shift from catabolism to anabolism.


Assuntos
Proteínas de Arabidopsis , Simulação de Dinâmica Molecular , Proteínas Serina-Treonina Quinases , Fosfatos Açúcares , Trealose , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Ligação Proteica , Arabidopsis/metabolismo , Sítios de Ligação , Fatores de Transcrição
2.
Nat Plants ; 10(4): 598-617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514787

RESUMO

Beneficial interactions with microorganisms are pivotal for crop performance and resilience. However, it remains unclear how heritable the microbiome is with respect to the host plant genotype and to what extent host genetic mechanisms can modulate plant-microbiota interactions in the face of environmental stresses. Here we surveyed 3,168 root and rhizosphere microbiome samples from 129 accessions of locally adapted Zea, sourced from diverse habitats and grown under control and different stress conditions. We quantified stress treatment and host genotype effects on the microbiome. Plant genotype and source environment were predictive of microbiome abundance. Genome-wide association analysis identified host genetic variants linked to both rhizosphere microbiome abundance and source environment. We identified transposon insertions in a candidate gene linked to both the abundance of a keystone bacterium Massilia in our controlled experiments and total soil nitrogen in the source environment. Isolation and controlled inoculation of Massilia alone can contribute to root development, whole-plant biomass production and adaptation to low nitrogen availability. We conclude that locally adapted maize varieties exert patterns of genetic control on their root and rhizosphere microbiomes that follow variation in their home environments, consistent with a role in tolerance to prevailing stress.


Assuntos
Microbiota , Raízes de Plantas , Rizosfera , Zea mays , Zea mays/microbiologia , Zea mays/genética , Microbiota/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Microbiologia do Solo , Estudo de Associação Genômica Ampla , Variação Genética , Adaptação Fisiológica/genética , Genótipo
3.
ACS Nano ; 18(4): 3497-3508, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215492

RESUMO

Two-dimensional (2D) materials have attracted intense interest due to their potential for applications in fields ranging from chemical sensing to catalysis, energy storage, and biomedicine. Recently, peptoids, a class of biomimetic sequence-defined polymers, have been found to self-assemble into 2D crystalline sheets that exhibit unusual properties, such as high chemical stability and the ability to self-repair. The structure of a peptoid is close to that of a peptide except that the side chains are appended to the amide nitrogen rather than the α carbon. In this study, we investigated the effect of peptoid sequence on the mechanism and kinetics of 2D assembly on mica surfaces using in situ AFM and time-resolved X-ray scattering. We explored three distinct peptoid sequences that are amphiphilic in nature with hydrophobic and hydrophilic blocks and are known to self-assemble into 2D sheets. The results show that their assembly on mica starts with deposition of aggregates that spread to establish 2D islands, which then grow by attachment of peptoids, either monomers or unresolvable small oligomers, following well-known laws of crystal step advancement. Extraction of the solubility and kinetic coefficient from the dependence of the growth rate on peptoid concentration reveals striking differences between the sequences. The sequence with the slowest growth rate in bulk and with the highest solubility shows almost no detachment; i.e., once a growth unit attaches to the island edge, there is almost no probability of detaching. Furthermore, a peptoid sequence with a hydrophobic tail conjugated to the final carboxyl residue in the hydrophilic block has enhanced hydrophobic interactions and exhibits rapid assembly both in the bulk and on mica. These assembly outcomes suggest that, while the π-π interactions between adjacent hydrophobic blocks play a major role in peptoid assembly, sequence details, particularly the location of charged groups, as well as interaction with the underlying substrate can significantly alter the thermodynamic stability and assembly kinetics.


Assuntos
Peptoides , Peptoides/química , Peptídeos/química , Silicatos de Alumínio , Amidas/química
4.
J Phys Chem B ; 127(29): 6573-6584, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37462325

RESUMO

Peptoids (N-substituted glycines) are a class of biomimetic polymers that have attracted significant attention due to their accessible synthesis and enzymatic and thermal stability relative to their naturally occurring counterparts (polypeptides). While these polymers provide the promise of more robust functional materials via hierarchical approaches, they present a new challenge for computational structure prediction for material design. The reliability of calculations hinges on the accuracy of interactions represented in the force field used to model peptoids. For proteins, structure prediction based on sequence and de novo design has made dramatic progress in recent years; however, these models are not readily transferable for peptoids. Current efforts to develop and implement peptoid-specific force fields are spread out, leading to replicated efforts and a fragmented collection of parameterized sidechains. Here, we developed a peptoid-specific force field containing 70 different side chains, using GAFF2 as starting point. The new model is validated based on the generation of Ramachandran-like plots from DFT optimization compared against force field reproduced potential energy and free energy surfaces as well as the reproduction of equilibrium cis/trans values for some residues experimentally known to form helical structures. Equilibrium cis/trans distributions (Kct) are estimated for all parameterized residues to identify which residues have an intrinsic propensity for cis or trans states in the monomeric state.


Assuntos
Peptoides , Peptoides/química , Reprodutibilidade dos Testes , Peptídeos/química , Polímeros
5.
Small ; 19(21): e2206810, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811318

RESUMO

Robust and cost-effective membrane-based separations are essential to solving many global crises, such as the lack of clean water. Even though the current polymer-based membranes are widely used for separations, their performance and precision can be enhanced by using a biomimetic membrane architecture that consists of highly permeable and selective channels embedded in a universal membrane matrix. Researchers have shown that artificial water and ion channels, such as carbon nanotube porins (CNTPs), embedded in lipid membranes can deliver strong separation performance. However, their applications are limited by the relative fragility and low stability of the lipid matrix. In this work, we demonstrate that CNTPs can co-assemble into two dimension (2D) peptoid membrane nanosheets, opening up a way to produce highly programmable synthetic membranes with superior crystallinity and robustness. A combination of molecular dynamics (MD) simulations, Raman spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements to verify the co-assembly of CNTP and peptoids are used and show that it does not disrupt peptoid monomer packing within the membrane. These results provide a new option for designing affordable artificial membranes and highly robust nanoporous solids.


Assuntos
Nanotubos de Carbono , Peptoides , Nanotubos de Carbono/química , Porinas/química , Peptoides/química , Biomimética , Lipídeos , Água/química
6.
New Phytol ; 237(6): 2196-2209, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604847

RESUMO

Root gravitropism includes gravity perception in the root cap, signal transduction between root cap and elongation zone, and curvature response in the elongation zone. The barley (Hordeum vulgare) mutant enhanced gravitropism 2 (egt2) displays a hypergravitropic root phenotype. We compared the transcriptomic reprogramming of the root cap, the meristem, and the elongation zone of wild-type (WT) and egt2 seminal roots upon gravistimulation in a time-course experiment and identified direct interaction partners of EGT2 by yeast-two-hybrid screening and bimolecular fluorescence complementation validation. We demonstrated that the elongation zone is subjected to most transcriptomic changes after gravistimulation. Here, 33% of graviregulated genes are also transcriptionally controlled by EGT2, suggesting a central role of this gene in controlling the molecular networks associated with gravitropic bending. Gene co-expression analyses suggested a role of EGT2 in cell wall and reactive oxygen species-related processes, in which direct interaction partners of EGT2 regulated by EGT2 and gravity might be involved. Taken together, this study demonstrated the central role of EGT2 and its interaction partners in the networks controlling root zone-specific transcriptomic reprogramming of barley roots upon gravistimulation. These findings can contribute to the development of novel root idiotypes leading to improved crop performance.


Assuntos
Gravitropismo , Hordeum , Gravitropismo/genética , Hordeum/genética , Raízes de Plantas , Gravitação , Meristema
7.
New Phytol ; 237(4): 1204-1214, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345913

RESUMO

In maize (Zea mays L.), lateral roots are formed in the differentiation zone of all root types in a multi-step process. The maize mutant lateral rootless 1 (lrt1) is defective in lateral root formation in primary and seminal roots but not in shoot-borne roots. We cloned the lrt1 gene by mapping in combination with BSA-seq and subsequent validation via CRISPR/Cas9. The lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus. DDB1-CUL4-ASSOCIATED FACTOR proteins are encoded by an evolutionary old gene family already present in nonseed plants. They are adaptors that bind substrate proteins and promote their ubiquitylation, thus typically marking them for subsequent degradation in the 26S proteasome. Gene expression studies demonstrated that lrt1 transcripts are expressed preferentially in the meristematic zone of all root types of maize. Downregulation of the rum1 gene in lrt1 mutants suggests that lrt1 acts upstream of the lateral root regulator rum1. Our results demonstrate that DCAF proteins play a key role in root-type-specific lateral root formation in maize. Together with its role in nitrogen acquisition in nitrogen-poor soil, lrt1 could be a promising target for maize improvement.


Assuntos
Ubiquitina-Proteína Ligases , Zea mays , Zea mays/genética , Zea mays/metabolismo , Subunidades Proteicas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Meristema/metabolismo
8.
Plant Physiol ; 188(3): 1537-1549, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34893899

RESUMO

Plant plastidial acyl-acyl carrier protein (ACP) desaturases are a soluble class of diiron-containing enzymes that are distinct from the diiron-containing integral membrane desaturases found in plants and other organisms. The archetype of this class is the stearoyl-ACP desaturase which converts stearoyl-ACP into oleoyl (18:1Δ9cis)-ACP. Several variants expressing distinct regioselectivity have been described including a Δ6-16:0-ACP desaturase from black-eyed Susan vine (Thunbergia alata). We solved a crystal structure of the T. alata desaturase at 2.05 Å resolution. Using molecular dynamics (MD) simulations, we identified a low-energy complex between 16:0-ACP and the desaturase that would position C6 and C7 of the acyl chain adjacent to the diiron active site. The model complex was used to identify mutant variants that could convert the T. alata Δ6 desaturase to Δ9 regioselectivity. Additional modeling between ACP and the mutant variants confirmed the predicted regioselectivity. To validate the in-silico predictions, we synthesized two variants of the T. alata desaturase and analyzed their reaction products using gas chromatography-coupled mass spectrometry. Assay results confirmed that mutants designed to convert T. alata Δ6 to Δ9 selectivity exhibited the predicted changes. In complementary experiments, variants of the castor desaturase designed to convert Δ9 to Δ6 selectivity lost some of their Δ9 desaturation ability and gained the ability to desaturate at the Δ6 position. The computational workflow for revealing the mechanistic understanding of regioselectivity presented herein lays a foundation for designing acyl-ACP desaturases with novel selectivities to increase the diversity of monoenes available for bioproduct applications.


Assuntos
Acanthaceae/genética , Acanthaceae/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas , Estrutura Molecular , Relação Estrutura-Atividade
9.
J Phys Chem A ; 126(1): 44-52, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34941278

RESUMO

Identification of molecules and elucidation of their chemical structure are ubiquitous problems in chemistry. Mass spectrometry (MS) can be used due to its sensitivity and versatility. For detection to occur, analytes must be ionized and transferred to the gas phase. Soft ionization processes such as electrospray ionization are popular; however, resulting microsolvated phases can alter the chemistry of analytes and therefore detection and identification. To understand these processes, we use computational methods to probe the ionization propensity of serine in the gas phase, aqueous microsolvated clusters, and aqueous solution. We show that the tautomeric form of serine is altered by the presence of water, as five water molecules can stabilize the zwitterionic tautomer. Inclusion of cosolutes such as ions can stabilize the zwitterion with as few as one or two water molecules present. We demonstrate that ionization propensity, as measured by gas phase bacisity, can increase by over 100 kJ/mol when placed in a small water-serine cluster, showing the sensitivity of the chemistry of microsolvated analytes. Finally, detailed analysis reveals that small droplets (less than seven water molecules) are extremely sensitive to addition of further water molecules. Beyond this limit, structural and electronic properties change little with droplet size.


Assuntos
Serina , Água , Íons
10.
J Phys Chem B ; 125(40): 11308-11319, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34601874

RESUMO

The binding of group II metal cations such as Ca2+ and Mg2+ has been largely categorized as electrostatic or ionic using carboxylate symmetric and asymmetric stretching frequency assignments that have been historically used with little regard for the solvation environment of aqueous solutions. However, given the importance of these cations and their binding mechanisms related to biological function and in revealing surface enrichment factors for ocean to marine aerosol transfer, it is imperative that a deeper understanding be sought to include hydration effects. Here, infrared reflection-absorption and Raman spectra for surface and solution phase carboxylate binding information, respectively, are compared against bare (unbound) carboxylate and bidentate Zn2+:carboxylate spectral signatures. Spectral non-coincidence effect analysis, temperature studies, and spectral and potential of mean force calculations result in a concise interpretation of binding motifs that include the role of mediating water molecules, that is, contact and solvent-shared ion pairs. Calcium directly binds to the carboxylate group in contact ion pairs where magnesium rarely does. Moreover, we reveal the dominance of the solvent-shared ion pair of magnesium with carboxylate at the air-water interface and in solution.


Assuntos
Cálcio , Magnésio , Íons , Soluções , Água
11.
J Phys Chem Lett ; 12(26): 6126-6133, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181429

RESUMO

Fully synthetic peptoid membranes are known to mimic important features of biological membranes, with several advantages over other biomimetic membranes. A fundamental understanding of how the individual peptoid amphiphiles assemble in solution to form the bilayer membrane is key to unlocking their versatility for application in a broad range of processes. In this study, in situ X-ray scattering and molecular dynamics simulations are used to understand the early stages of assembly of three different peptoids that exhibit distinctly different crystallization kinetics. The in situ measurements reveal that the peptoids aggregate first into a nascent phase that is less crystalline than the assembled peptoid membrane. Anisotropic aromatic interactions are determined to be the dominant driving force in the early stages of membrane formation. These results provide key insights into how the peptoid assembly may be manipulated during the early stages of assembly and nucleation and growth.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Peptoides/química , Conformação Molecular , Simulação de Dinâmica Molecular
12.
Nat Plants ; 7(4): 481-499, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33833418

RESUMO

Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root architecture and microbial community structure remain elusive in maize. Here, we demonstrate that transcriptomic gradients along the longitudinal root axis associate with specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the reciprocal interactions between root architecture and the composition and diversity of specific microbial taxa in the rhizosphere resulting in improved plant performance. These findings may open new avenues towards the breeding of high-yielding and nutrient-efficient crops by exploiting their interaction with beneficial soil microorganisms.


Assuntos
Flavonas/metabolismo , Nitrogênio/deficiência , Oxalobacteraceae/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Zea mays/metabolismo , Microbiota , Melhoramento Vegetal , Rizosfera , Transcriptoma , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
13.
Biophys J ; 120(17): 3841-3853, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33631202

RESUMO

The plant acyl-acyl carrier protein (ACP) desaturases are a family of soluble enzymes that convert saturated fatty acyl-ACPs into their cis-monounsaturated equivalents in an oxygen-dependent reaction. These enzymes play a key role in biosynthesis of monounsaturated fatty acids in plants. ACPs are central proteins in fatty acid biosynthesis that deliver acyl chains to desaturases. They have been reported to show a varying degree of local dynamics and structural variability depending on the acyl chain size. It has been suggested that substrate-specific changes in ACP structure and dynamics have a crucial impact on the desaturase enzymatic activity. Using molecular dynamics simulations, we investigated the intrinsic solution structure and dynamics of ACP from spinach with four different acyl chains: capric (C10), myristic (C14), palmitic (C16), and stearic (C18) acids. We found that the fatty acids can adopt two distinct structural binding motifs, which feature different binding free energies and influence the ACP dynamics in a different manner. Docking simulations of ACP to castor Δ9-desaturase and ivy Δ4-desaturase suggest that ACP desaturase interactions could lead to a preferential selection between the motifs.


Assuntos
Proteína de Transporte de Acila , Spinacia oleracea , Ácidos Graxos , Ácidos Graxos Monoinsaturados
14.
J Chem Phys ; 153(2): 024103, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668925

RESUMO

We study the prototypical SN2 reaction Cl- + CH3Cl → CH3Cl + Cl- in water using quantum mechanics/molecular mechanics (QM/MM) computer simulations with transition path sampling and inertial likelihood maximization. We have identified a new solvent coordinate to complement the original atom-exchange coordinate used in the classic analysis by Chandrasekhar, Smith, and Jorgensen [J. Am. Chem. Soc. 107, 154 (1985)]. The new solvent coordinate quantifies instantaneous solvent-induced polarization relative to the equilibrium average charge density at each point along the reaction pathway. On the basis of likelihood scores and committor distributions, the new solvent coordinate improves upon the description of solvent dynamical effects relative to previously proposed solvent coordinates. However, it does not increase the transmission coefficient or the accuracy of a transition state theory rate calculation.

15.
J Phys Chem B ; 124(27): 5665-5675, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32482074

RESUMO

Rate theories have found great utility across the chemical sciences by providing a physically transparent way to analyze dynamical processes. Here we demonstrate the benefits of using transition state theory and Marcus theory to study the rate of proton transfer in HCl solutions. By using long ab initio molecular dynamics simulations, we show that good agreement is obtained between these two different formulations of rate theory and how they can be used to study the pathways and lifetime of proton transfer in aqueous solution. Since both rate theory formulations utilize identical sets of molecular data, this provides a self-consistent theoretical picture of the rates of aqueous phase proton transfer. Specifically, we isolate and quantify the rates of proton transfer, ion-pair dissociation, and solvent exchange in concentrated HCl solutions. Our analysis predicts a concentration dependence to both proton transfer and ion-pairing. Moreover, our estimate of the lifetime for the Zundel species is 0.8 and 1.3 ps for 2 M and 8 M HCl, respectively. We demonstrate that concentration effects can indeed be quantified through the combination of state-of-the-art simulation and theory and provides a picture of the important correlations between the cation (hydronium) and the counterion in acid solutions.

16.
J Am Chem Soc ; 142(13): 6093-6102, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079390

RESUMO

When hydrolyzable cations such as aluminum interact with solid-water interfaces, macroscopic interfacial properties (e.g., surface charge and potential) and interfacial phenomena (e.g., particle adhesion) become tightly linked with the microscopic details of ion adsorption and speciation. We use in situ atomic force microscopy to directly image individual aluminum ions at a mica-water interface and show how adsorbate populations change with pH and aluminum activity. Complementary streaming potential measurements then allow us to build a triple layer model (TLM) that links surface potentials to adsorbate populations, via equilibrium binding constants. Our model predicts that hydrolyzed species dominate the mica-water interface, even when unhydrolyzed species dominate the solution. Ab initio molecular dynamics (AIMD) simulations confirm that aluminum hydrolysis is strongly promoted at the interface. The TLM indicates that hydrolyzed adsorbates are responsible for surface-potential inversions, and we find strong correlations between hydrolyzed adsorbates and particle-adhesion forces, suggesting that these species mediate adhesion by chemical bridging.


Assuntos
Silicatos de Alumínio/química , Alumínio/análise , Água/química , Adsorção , Hidrólise , Simulação de Dinâmica Molecular , Propriedades de Superfície
17.
Phys Chem Chem Phys ; 22(19): 10641-10652, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894785

RESUMO

The ability to reproduce the experimental structure of water around the sodium and potassium ions is a key test of the quality of interaction potentials due to the central importance of these ions in a wide range of important phenomena. Here, we simulate the Na+ and K+ ions in bulk water using three density functional theory functionals: (1) the generalized gradient approximation (GGA) based dispersion corrected revised Perdew, Burke, and Ernzerhof functional (revPBE-D3) (2) the recently developed strongly constrained and appropriately normed (SCAN) functional (3) the random phase approximation (RPA) functional for potassium. We compare with experimental X-ray diffraction (XRD) and X-ray absorption fine structure (EXAFS) measurements to demonstrate that SCAN accurately reproduces key structural details of the hydration structure around the sodium and potassium cations, whereas revPBE-D3 fails to do so. However, we show that SCAN provides a worse description of pure water in comparison with revPBE-D3. RPA also shows an improvement for K+, but slow convergence prevents rigorous comparison. Finally, we analyse cluster energetics to show SCAN and RPA have smaller fluctuations of the mean error of ion-water cluster binding energies compared with revPBE-D3.

18.
Proc Natl Acad Sci U S A ; 116(30): 14874-14880, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31278149

RESUMO

We exploit gas-phase cluster ion techniques to provide insight into the local interactions underlying divalent metal ion-driven changes in the spectra of carboxylic acids at the air-water interface. This information clarifies the experimental findings that the CO stretching bands of long-chain acids appear at very similar energies when the head group is deprotonated by high subphase pH or exposed to relatively high concentrations of Ca2+ metal ions. To this end, we report the evolution of the vibrational spectra of size-selected [Ca2+·RCO2-]+·(H2O) n=0to12 and RCO2-·(H2O) n=0to14 cluster ions toward the features observed at the air-water interface. Surprisingly, not only does stepwise hydration of the RCO2- anion and the [Ca2+·RCO2-]+ contact ion pair yield solvatochromic responses in opposite directions, but in both cases, the responses of the 2 (symmetric and asymmetric stretching) CO bands to hydration are opposite to each other. The result is that both CO bands evolve toward their interfacial asymptotes from opposite directions. Simulations of the [Ca2+·RCO2-]+·(H2O) n clusters indicate that the metal ion remains directly bound to the head group in a contact ion pair motif as the asymmetric CO stretch converges at the interfacial value by n = 12. This establishes that direct metal complexation or deprotonation can account for the interfacial behavior. We discuss these effects in the context of a model that invokes the water network-dependent local electric field along the C-C bond that connects the head group to the hydrocarbon tail as the key microscopic parameter that is correlated with the observed trends.

19.
J Phys Chem B ; 123(10): 2414-2423, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30763096

RESUMO

Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+-SCN- ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN- groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.


Assuntos
Nanoestruturas/química , Compostos de Amônio Quaternário/química , Tiocianatos/química , Água/química , Eletrólitos/química , Interações Hidrofóbicas e Hidrofílicas , Íons , Simulação de Dinâmica Molecular , Propriedades de Superfície , Vibração
20.
J Am Chem Soc ; 141(5): 2135-2142, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30615440

RESUMO

Muscovite mica (001) is a widely used model surface for controlling molecular assembly and a common substrate for environmental adsorption processes. The mica (001) surface displays near-trigonal symmetry, but many molecular adsorbates-including water-exhibit unequal probabilities of alignment along its three nominally equivalent lattice directions. Buried hydroxyl groups within the muscovite structure are speculated to be responsible, but direct evidence is lacking. Here, we utilize vibrational sum frequency generation spectroscopy (vSFG) to characterize the orientation and hydrogen-bonding environment of near-surface hydroxyls inside mica. Multiple distinct peaks are detected in the O-H stretch region, which we attribute to Si/Al substitution in the SiO4 tetrahedron and K+ ion adsorption above the hydroxyls based on density functional theory simulations. Our findings demonstrate that vSFG can identify the absolute orientation of -OH groups and, hence, the surface termination at a mica surface, providing a means to investigate how -OH groups influence molecular adsorption and better understand mica stacking-sequences and physical behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...