Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 25(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166559

RESUMO

BACKGROUND: Obesity rates in the U.S. continue to increase, with nearly 50% of the population being either obese or morbidly obese. Obesity, along with female sex, are leading risk factors for sporadic Alzheimer's Disease (AD) necessitating the need to better understand how these variables impact cellular function independent of age or genetic mutations. Animal and clinical studies both indicate that autophagy-lysosomal pathway (ALP) dysfunction is among the earliest known cellular systems to become perturbed in AD, preceding cognitive decline, yet little is known about how obesity and sex affects these cellular functions in the hippocampus, a brain region uniquely susceptible to the negative effects of obesity. We hypothesized that obesity would negatively affect key markers of ALP in the hippocampus, effects would vary based on sex, and that caloric restriction would counteract obesity effects. METHODS: Female and male mice were placed on an obesogenic diet for 10 months, at which point half were switched to caloric restriction for three months, followed by cognitive testing in the Morris watermaze. Hippocampus was analyzed by western blot and qPCR. RESULTS: Cognitive function in female mice responded differently to caloric restriction based on whether they were on a normal or obesogenic diet; male cognition was only mildly affected by caloric restriction and not obesity. Significant male-specific changes occurred in cellular markers of autophagy, including obesity increasing pAkt, Slc38a9, and Atg12, while caloric restriction reduced pRPS6 and increased Atg7. In contrast females experienced changes due to diet/caloric restriction predominately in lysosomal markers including increased TFE3, FLCN, FNIP2, and pAMPK. CONCLUSIONS: Results support that hippocampal ALP is a target of obesity and that sex shapes molecular responses, while providing insight into how dietary manipulations affect learning and memory based on sex.


Assuntos
Restrição Calórica , Obesidade Mórbida , Camundongos , Masculino , Feminino , Animais , Restrição Calórica/métodos , Caracteres Sexuais , Obesidade Mórbida/metabolismo , Transdução de Sinais , Cognição , Autofagia/fisiologia , Hipocampo/metabolismo , Lisossomos
2.
Front Pharmacol ; 13: 910535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754505

RESUMO

Adenosinergic activities are suggested to participate in SUDEP pathophysiology; this study aimed to evaluate the adenosine hypothesis of SUDEP and specifically the role of adenosine A2A receptor (A2AR) in the development of a SUDEP mouse model with relevant clinical features. Using a combined paradigm of intrahippocampal and intraperitoneal administration of kainic acid (KA), we developed a boosted-KA model of SUDEP in genetically modified adenosine kinase (ADK) knockdown (Adk+/-) mice, which has reduced ADK in the brain. Seizure activity was monitored using video-EEG methods, and in vivo recording of local field potential (LFP) was used to evaluate neuronal activity within the nucleus tractus solitarius (NTS). Our boosted-KA model of SUDEP was characterized by a delayed, postictal sudden death in epileptic mice. We demonstrated a higher incidence of SUDEP in Adk+/- mice (34.8%) vs. WTs (8.0%), and the ADK inhibitor, 5-Iodotubercidin, further increased SUDEP in Adk+/- mice (46.7%). We revealed that the NTS level of ADK was significantly increased in epileptic WTs, but not in epileptic Adk+/- mutants, while the A2AR level in NTS was increased in epileptic (WT and Adk+/-) mice vs. non-epileptic controls. The A2AR antagonist, SCH58261, significantly reduced SUDEP events in Adk+/- mice. LFP data showed that SCH58261 partially restored KA injection-induced suppression of gamma oscillation in the NTS of epileptic WT mice, whereas SCH58261 increased theta and beta oscillations in Adk+/- mutants after KA injection, albeit with no change in gamma oscillations. These LFP findings suggest that SCH58261 and KA induced changes in local neuronal activities in the NTS of epileptic mice. We revealed a crucial role for NTS A2AR in SUDEP pathophysiology suggesting A2AR as a potential therapeutic target for SUDEP risk prevention.

3.
Front Mol Neurosci ; 13: 97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581708

RESUMO

Epileptogenesis is a common consequence of brain insults, however, the prevention or delay of the epileptogenic process remains an important unmet medical challenge. Overexpression of glycine transporter 1 (GlyT1) is proposed as a pathological hallmark in the hippocampus of patients with temporal lobe epilepsy (TLE), and we previously demonstrated in rodent epilepsy models that augmentation of glycine suppressed chronic seizures and altered acute seizure thresholds. In the present study we evaluated the effect of the GlyT1 inhibitor, sarcosine (aka N-methylglycine), on epileptogenesis and also investigated possible mechanisms. We developed a modified rapid kindling model of epileptogenesis in rats combined with seizure score monitoring to evaluate the antiepileptogenic effect of sarcosine. We used immunohistochemistry and Western blot analysis for the evaluation of GlyT1 expression and epigenetic changes of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the epileptogenic hippocampi of rats, and further evaluated expression changes in enzymes involved in the regulation of DNA methylation, ten-eleven translocation methylcytosine dioxygenase 1 (TET1), DNA-methyltransferase 1 (DNMT1), and DNMT3a. Our results demonstrated: (i) experimental evidence that sarcosine (3 g/kg, i.p. daily) suppressed kindling epileptogenesis in rats; (ii) the sarcosine-induced antiepileptogenic effect was accompanied by a suppressed hippocampal GlyT1 expression as well as a reduction of hippocampal 5mC levels and a corresponding increase in 5hmC; and (iii) sarcosine treatment caused differential expression changes of TET1 and DNMTs. Together, these findings suggest that sarcosine has unprecedented disease-modifying properties in a kindling model of epileptogenesis in rats, which was associated with altered hippocampal DNA methylation. Thus, manipulation of the glycine system is a potential therapeutic approach to attenuate the development of epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...