Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 136(6): 064502, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24760051

RESUMO

For systematic laboratory studies of bone fractures in general and intra-articular fractures in particular, it is often necessary to control for injury severity. Quantitatively, a parameter of primary interest in that regard is the energy absorbed during the injury event. For this purpose, a novel technique has been developed to measure energy absorption in experimental impaction. The specific application is for fracture insult to porcine hock (tibiotalar) joints in vivo, for which illustrative intra-operative data are reported. The instrumentation allowed for the measurement of the delivered kinetic energy and of the energy passed through the specimen during impaction. The energy absorbed by the specimen was calculated as the difference between those two values. A foam specimen validation study was first performed to compare the energy absorption measurements from the pendulum instrumentation versus the work of indentation performed by an MTS machine. Following validation, the pendulum apparatus was used to measure the energy absorbed during intra-articular fractures created in 14 minipig hock joints in vivo. The foam validation study showed close correspondence between the pendulum-measured energy absorption and MTS-performed work of indentation. In the survival animal series, the energy delivered ranged from 31.5 to 48.3 Js (41.3±4.0, mean±s.d.) and the proportion of energy absorbed to energy delivered ranged from 44.2% to 64.7% (53.6%±4.5%). The foam validation results support the reliability of the energy absorption measure provided by the instrumented pendulum system. Given that a very substantial proportion of delivered energy passed--unabsorbed--through the specimens, the energy absorption measure provided by this novel technique arguably provides better characterization of injury severity than is provided simply by energy delivery.


Assuntos
Transferência de Energia , Fraturas Ósseas/metabolismo , Articulações/lesões , Teste de Materiais/instrumentação , Animais , Extremidade Inferior/lesões , Suínos , Tíbia/lesões
2.
Osteoarthritis Cartilage ; 21(1): 200-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23069855

RESUMO

OBJECTIVE: A novel impaction fracture insult technique, developed for modeling post-traumatic osteoarthritis in porcine hocks in vivo, was tested to determine the extent to which it could replicate the cell-level cartilage pathology in human clinical intra-articular fractures. DESIGN: Eight fresh porcine hocks (whole-joint specimens with fully viable chondrocytes) were subjected to fracture insult. From the fractured distal tibial surfaces, osteoarticular fragments were immediately sampled and cultured in vitro for 48 h. These samples were analyzed for the distribution and progression of chondrocyte death, using the Live/Dead assay. Five control joints, in which "fractures" were simulated by means of surgical osteotomy, were also similarly analyzed. RESULTS: In the impaction-fractured joints, chondrocyte death was concentrated in regions adjacent to fracture lines (near-fracture regions), as evidenced by fractional cell death significantly higher (P < 0.0001) than in central non-fracture (control) regions. Although nominally similar spatial distribution patterns were identified in the osteotomized joints, fractional cell death in the near-osteotomy regions was nine-fold lower (P < 0.0001) than in the near-fracture regions. Cell death in the near-fracture regions increased monotonically during 48 h after impaction, dominantly within 1 mm from the fracture lines. CONCLUSION: The impaction-fractured joints exhibited chondrocyte death characteristics reasonably consistent with those in human intra-articular fractures, but were strikingly different from those in "fractures" simulated by surgical osteotomy. These observations support promise of this new impaction fracture technique as a mechanical insult modality to replicate the pathophysiology of human intra-articular fractures in large animal joints in vivo.


Assuntos
Cartilagem Articular , Modelos Animais de Doenças , Fraturas Intra-Articulares/fisiopatologia , Articulações Tarsianas/fisiopatologia , Animais , Cartilagem Articular/lesões , Cartilagem Articular/fisiopatologia , Morte Celular , Condrócitos/patologia , Condrócitos/fisiologia , Osteotomia/efeitos adversos , Suínos
3.
Osteoarthritis Cartilage ; 14(2): 131-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16289734

RESUMO

OBJECTIVE: Determine how stepoff incongruities of the distal tibia affect aggregate (whole-cycle) contact stresses and contact stress gradients for a complete motion cycle in human cadaveric ankles. METHOD: Ten human cadaveric ankles were subjected to quasiphysiologic forces during stance-phase range of motion. Each specimen was loaded intact, with anatomic reduction of the anterolateral quarter of the distal tibia, and with increasing stepoffs of the anterolateral fragment up to 4.0mm. Transient contact stresses were measured using a custom-built, real-time stress transducer that sampled stresses at 132Hz at 1472 separate foci (sensels). Aggregate stresses were calculated by summing the sequential transient stress values multiplied by the transient sampling duration for the complete motion cycle at each sensel. Transient contact stress gradients were calculated at each sensel using a central-differencing formula applied to adjacent transient stress measurements. Aggregate contact stress gradients were calculated by vector summation of sequential transient stress gradients multiplied by the sampling duration. RESULTS: Compared to the intact configuration, anatomic reduction of the fragment caused minimal changes in aggregate contact stresses and stress gradients (30% increase compared to intact values). In contrast, stepoffs caused substantial increases (200% increase compared to intact values) in peak and mean whole-cycle stresses and gradients. CONCLUSIONS: Aggregate contact stresses and stress gradients quantify loading history for the complete motion cycle. Incongruity-associated changes in aggregate stresses and gradients are a surrogate for "accumulated" damage over a motion cycle in stepoff specimens. These loading abnormalities may be important determinants of posttraumatic arthritis.


Assuntos
Traumatismos do Tornozelo/fisiopatologia , Articulação do Tornozelo/fisiopatologia , Artrite/etiologia , Fraturas Ósseas/fisiopatologia , Traumatismos do Tornozelo/patologia , Articulação do Tornozelo/patologia , Artrite/patologia , Artrite/fisiopatologia , Fraturas Ósseas/patologia , Humanos , Amplitude de Movimento Articular , Estresse Mecânico , Propriedades de Superfície , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...