Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 20(3): 426-432, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29450949

RESUMO

The spatial deployment of lateral roots determines the ability of a plant to interact with the surrounding environment for nutrition and anchorage. This paper shows that besides the pericycle, the vascular cambium becomes active in Arabidopsis thaliana taproot at a later stage of development and is also able to form new lateral roots. To demonstrate the above, we implemented a two-step approach in which the first step leads to development of a secondary structure in A. thaliana taproot, and the second applies a mechanical stress on the vascular cambium to initiate formation of a new lateral root primordium. GUS staining showed PRE3, DR5 and WOX11 signals in the cambial zone of the root during new lateral root formation. An advanced level of wood formation, characterized by the presence of medullar rays, was achieved. Preliminary investigations suggest the involvement of auxin and two transcription factors (PRE3/ATBS1/bHLH135/TMO7 and WOX11) in the transition of some vascular cambium initials from a role as producers of xylem/phloem mother cells to founder cells of a new lateral root primordium.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas de Homeodomínio/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plântula/crescimento & desenvolvimento
2.
J Plant Res ; 128(4): 595-611, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25968344

RESUMO

To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.


Assuntos
Incêndios , Quercus/classificação , Quercus/fisiologia , Água/metabolismo , Folhas de Planta/fisiologia , Transpiração Vegetal , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...