Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 1026724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353734

RESUMO

Pseudomonas aeruginosa is a wide-spread opportunistic human pathogen and a high-risk factor for immunodeficient people and patients with cystic fibrosis. The extracellular lipase A belongs to the virulence factors of P. aeruginosa. Prior to the secretion, the lipase undergoes folding and activation by the periplasmic foldase LipH. At this stage, the enzyme is highly prone to aggregation in mild and high salt concentrations typical for the sputum of cystic fibrosis patients. Here, we demonstrate that the periplasmic chaperone Skp of P. aeruginosa efficiently prevents misfolding of the lipase A in vitro. In vivo experiments in P. aeruginosa show that the lipase secretion is nearly abolished in absence of the endogenous Skp. Small-angle X-ray scattering elucidates the trimeric architecture of P. aeruginosa Skp and identifies two primary conformations of the chaperone, a compact and a widely open. We describe two binding modes of Skp to the lipase, with affinities of 20 nM and 2 µM, which correspond to 1:1 and 1:2 stoichiometry of the lipase:Skp complex. Two Skp trimers are required to stabilize the lipase via the apolar interactions, which are not affected by elevated salt concentrations. We propose that Skp is a crucial chaperone along the lipase maturation and secretion pathway that ensures stabilization and carry-over of the client to LipH.

2.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886850

RESUMO

The evolutionary conserved ESCRT-III complex is a device for membrane remodelling in various cellular processes, such as the formation of intraluminal vesicles (ILVs), cytokinesis, and membrane repair. The common theme of all these processes is the abscission of membrane away from the cytosol. At its heart in Drosophila is Shrub, CHMP4 in humans, which dynamically polymerises into filaments through electrostatic interactions among the protomers. For the full activity, Shrub/CHMP4 requires physical interaction with members of the Lgd protein family. This interaction is mediated by the odd-numbered DM14 domains of Lgd, which bind to the negative interaction surface of Shrub. While only one Lgd and one Shrub exist in the genome of Drosophila, mammals have two Lgd orthologs, LGD1/CC2D1B and LGD2/CC2D1A, as well as three CHMP4s in their genomes, CHMP4A, CHMP4B, and CHMP4C. The rationale for the diversification of the ESCRT components is not understood. We here use Drosophila as a model system to analyse the activity of the human orthologs of Shrub and Lgd at an organismal level. This enabled us to use the plethora of available techniques available for Drosophila. We present evidence that CHMP4B is the true ortholog of Shrub, while CHMP4A and CHMP4C have diverging activities. Nevertheless, CHMP4A and CHMP4C can enhance the activity of CHMP4B, raising the possibility that they can form heteropolymers in vivo. Our structure-function analysis of the LGD1 and LGD2 indicates that the C2 domain of the LGD proteins has a specific function beyond protein stability and subcellular localisation. Moreover, our data specify that CHMP4B interacts more efficiently with LGD1 than with LGD2.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Complexos Endossomais de Distribuição Requeridos para Transporte , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas do Tecido Nervoso , Proteínas Repressoras/genética
3.
Adv Exp Med Biol ; 1287: 31-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034024

RESUMO

The endosomal pathway plays a pivotal role upon signal transduction in the Notch pathway. Recent work on lethal (2) giant discs (lgd) points to an additional critical role in avoiding uncontrolled ligand-independent signalling during trafficking of the Notch receptor through the endosomal pathway to the lysosome for degradation. In this chapter, we will outline the journey of Notch through the endosomal system and present an overview of the current knowledge about Lgd and its mammalian orthologs Lgd1/CC2D1b and Lgd2/CC2D1a. We will then discuss how Notch is activated in the absence of lgd function in Drosophila and ask whether there is evidence that a similar ligand-independent activation of the Notch pathway can also happen in mammals if the orthologs are inactivated.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Neoplasias/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Endossomos/metabolismo , Humanos
4.
BMC Biol ; 18(1): 200, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33349255

RESUMO

BACKGROUND: A major task of the endosomal sorting complex required for transport (ESCRT) machinery is the pinching off of cargo-loaded intraluminal vesicles (ILVs) into the lumen of maturing endosomes (MEs), which is essential for the complete degradation of transmembrane proteins in the lysosome. The ESCRT machinery is also required for the termination of signalling through activated signalling receptors, as it separates their intracellular domains from the cytosol. At the heart of the machinery lies the ESCRT-III complex, which is required for an increasing number of processes where membrane regions are abscised away from the cytosol. The core of ESCRT-III, comprising four members of the CHMP protein family, organises the assembly of a homopolymer of CHMP4, Shrub in Drosophila, that is essential for abscission. We and others identified the tumour-suppressor lethal (2) giant discs (Lgd)/CC2D1 as a physical interactor of Shrub/CHMP4 in Drosophila and mammals, respectively. RESULTS: Here, we show that the loss of function of lgd constitutes a state of reduced activity of Shrub/CHMP4/ESCRT-III. This hypomorphic shrub mutant situation causes a slight decrease in the rate of ILV formation that appears to result in incomplete incorporation of Notch into ILVs. We found that the forced incorporation in ILVs of lgd mutant MEs suppresses the uncontrolled and ligand-independent activation of Notch. Moreover, the analysis of Su(dx) lgd double mutants clarifies their relationship and suggests that they are not operating in a linear pathway. We could show that, despite prolonged lifetime, the MEs of lgd mutants have a similar ILV density as wild-type but less than rab7 mutant MEs, suggesting the rate in lgd mutants is slightly reduced. The analysis of the MEs of wild-type and mutant cells in the electron microscope revealed that the ESCRT-containing electron-dense microdomains of ILV formation at the limiting membrane are elongated, indicating a change in ESCRT activity. Since lgd mutants can be rescued to normal adult flies if extra copies of shrub (or its mammalian ortholog CHMP4B) are added into the genome, we conclude that the net activity of Shrub is reduced upon loss of lgd function. Finally, we show that, in solution, CHMP4B/Shrub exists in two conformations. LGD1/Lgd binding does not affect the conformational state of Shrub, suggesting that Lgd is not a chaperone for Shrub/CHMP4B. CONCLUSION: Our results suggest that Lgd is required for the full activity of Shrub/ESCRT-III. In its absence, the activity of the ESCRT machinery is reduced. This reduction causes the escape of a fraction of cargo, among it Notch, from incorporation into ILVs, which in turn leads to an activation of this fraction of Notch after fusion of the ME with the lysosome. Our results highlight the importance of the incorporation of Notch into ILV not only to assure complete degradation, but also to avoid uncontrolled activation of the pathway.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Masculino , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...