Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(53): 33271-33275, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497549

RESUMO

CuO-CeO2/SiO2 catalysts lose activity when they are calcined at 600 °C and temperatures above. This loss of activity was related to a decrease in the amount of highly dispersed Cu species interacting with Ce (CuO-CeO2 interface) over the SiO2 support. These species are highly active in CO oxidation, so this reaction was selected to conduct this study. In order to avoid the activity loss in CuO-CeO2/SiO2 catalysts, the effect of high Ce loads (8, 16, 24, and 36%) on the thermal stability of these catalysts was studied. The results reveal that when increasing calcination temperature from 500 to 700 °C, the catalysts with Ce load equal to or higher than 24% increase the formation of highly dispersed Cu interacting with Ce and therefore the activity (90% of CO conversion at 120 °C). In catalysts with Ce load below 24%, Cu species agglomerate and decrease the activity (less than 5% of CO conversion at 120 °C).

2.
Rev Environ Contam Toxicol ; 250: 69-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32940760

RESUMO

Urban yellow dust deposition is a common phenomenon in many parts of the world, which is sometimes called "sulfur shower," "sulfur rain," or "pollen storm." Most people, especially those living in the vicinity of industrial facilities, wrongly perceive the yellow dust as sulfur when in fact it is pollen. The misunderstanding increases risk perception as people believe the "yellow powder" is a serious threat to their health. Based on simple observations, it is virtually impossible to differentiate sulfur from pollen, so risk communication should consider the chemical, biological, and toxicological aspects of these agents. In this review, we clarify that industrial emissions of sulfur are under the form of sulfides, oxides, and other volatile compounds which are gaseous and noncolored, and we explain that it is chemically impossible for gaseous sulfur to become solid yellow sulfur under normal environmental conditions. We also describe pollen and its release from trees, shrubs, and herbs a process influenced by atmospheric conditions. We suggest take-home messages that risk communicators may use when explaining the phenomenon to their communities.


Assuntos
Poluentes Atmosféricos/toxicidade , Poeira/análise , Pólen/química , Enxofre/toxicidade , Poluentes Atmosféricos/análise , Comunicação , Humanos , Pólen/efeitos adversos , Chuva , Enxofre/análise
3.
Biotechnol Rep (Amst) ; 20: e00286, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30386734

RESUMO

Biocatalyst systems based on biofilms were developed to remove nitrogen and sulfur-containing heterocyclic hydrocarbons using Cobetia sp. strain MM1IDA2H-1 and Rhodococcus rhodochrous. The curli overproducers mutants CM1 and CM4 were derived from Cobetia sp. strain and used to build monostrain biofilms to remove quinoline; and together with R. rhodochrous to simultaneously remove quinoline and dibenzothiophene using mixed biofilms. The quinoline removal using biofilms were 96% and 97% using CM1 or CM4 curli overproducers respectively, whereas bacterial suspensions assays yielded 19% and 24% with the same strains. At the other hand, the simultaneous removal of quinoline and dibenzothiophene using mixed biofilms were respectively 50% and 58% using strains R. rhodochrous with CM1 and 75% and 50% using R. rhodochrous with CM4. Results show that biofilms were more efficient than bacterial suspension assays and that in mixed biofilms the shared surface area by two or more bacteria could affect the final yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...