RESUMO
Malaria etiologies with pathophysiological similarities to hypertension currently constitute a major subject of research. The malaria-high blood pressure hypothesis is strongly supported by observations of the increasing incidence of hypertension in malaria-endemic, low- and middle-income countries with poor socioeconomic conditions, particularly in sub-Saharan African countries. Malnutrition and low birth weight with persistent symptomatic malaria presentations in pregnancy correlate strongly with the development of preeclampsia, gestational hypertension and subsequent hypertension in adult life. Evidence suggest that the link between malaria infection and high blood pressure involves interactions between malaria parasites and erythrocytes, the inflammatory process, effects of the infection during pregnancy; effects on renal and vascular functions as well as effects in sickle cell disease. Possible mechanisms which provide justification for the malaria-high blood pressure hypothesis include the following: endothelial dysfunction (reduced nitric oxide (NO) levels), impaired release of local neurotransmitters and cytokines, decrease in vascular smooth muscle cell viability and/or alterations in cellular calcium signaling leading to enhanced vascular reactivity, remodeling, and cardiomyopathies, deranged homeostasis through dehydration, elevated intracellular mediators and proinflammatory cytokine responses, possible genetic regulations, activation of the renin-angiotensin-aldosterone system mechanisms and renal derangements, severe anemia and hemolysis, renal failure, and end organ damage. Two key mediators of the malaria-high blood pressure association are: endothelial dysfunction (reduced NO) and increased angiotensin-converting enzyme activity/angiotensin II levels. Sickle cell disease is associated with protection against malaria infection and reduced blood pressure. In this review, we present the state of knowledge about the malaria-blood pressure hypothesis and suggest insights for future studies.