Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 95(1): e10828, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36594542

RESUMO

In the present work, the degradation of magenta dye has been investigated using ultrasonic (US) and ultraviolet (UV) irradiation at a laboratory scale. Additionally, the investigation was conducted at a semi-pilot scale by employing hydrodynamic cavitation and a novel air-marble cavitation reactor. Initially, optimization studies such as the effect of initial dye concentration and catalyst loading of TiO2 and MnO2 followed by the effect of combined catalyst loading (TiO2 /MnO2 ) on the extent of degradation have been studied at a capacity of 3 L. It was observed that the US irradiation results in 87.1% and 68.2% of degradation, whereas the UV irradiation results in 79.8% and 56.4% extent of degradation at 1 g/l of TiO2 and 0.8 g/l of MnO2 , respectively. The maximum degradation was 92.1% at the combined loading of 0.6 g/l (1:0.8; TiO2 :MnO2 ) using US irradiation with a capacity of 3 L and 81.3% using a hydrodynamic cavitation reactor with a semi-pilot scale capacity of 7 L. The chemical oxygen demand (COD) analysis also showed the highest COD removal of 92% at a small scale using the US irradiation and 76% at a semi-pilot scale using hydrodynamic cavitation. On a small scale, the cost of a US/TiO2 + MnO2 treatment scheme is US$ 0.01/L, whereas on a semi-pilot scale using HC/TiO2 + MnO2 , the cost is US$ 0.04/L. Both of these treatment schemes offer viable pathways for degradation based on energy and economic assessments. Overall, the current work has clearly demonstrated the effectiveness of the cavitational reactor for the efficient degradation of magenta dye from lab to semi-pilot scale operation. PRACTITIONER POINTS: Small-scale dye containing wastewater treatment using ultrasound and ultraviolet irradiation Combined use of catalysts at large-scale operations with novel cavitation techniques Novel cavitation techniques studied for dye degradation. Energy efficiency and cost analysis evaluated for AOPs studies.


Assuntos
Compostos de Manganês , Corantes de Rosanilina , Óxidos
2.
Ultrason Sonochem ; 21(3): 1035-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24262760

RESUMO

Diclofenac sodium, a widely detected pharmaceutical drug in wastewater samples, has been selected as a model pollutant for degradation using novel combined approach of hydrodynamic cavitation and heterogeneous photocatalysis. A slit venturi has been used as cavitating device in the hydrodynamic cavitation reactor. The effect of various operating parameters such as inlet fluid pressure (2-4 bar) and initial pH of the solution (4-7.5) on the extent of degradation have been studied. The maximum extent of degradation of diclofenac sodium was obtained at inlet fluid pressure of 3 bar and initial pH as 4 using hydrodynamic cavitation alone. The loadings of TiO2 and H2O2 have been optimised to maximise the extent of degradation of diclofenac sodium. Kinetic study revealed that the degradation of diclofenac sodium fitted first order kinetics over the selected range of operating protocols. It has been observed that combination of hydrodynamic cavitation with UV, UV/TiO2 and UV/TiO2/H2O2 results in enhanced extents of degradation as compared to the individual schemes. The maximum extent of degradation as 95% with 76% reduction in TOC has been observed using hydrodynamic cavitation in conjunction with UV/TiO2/H2O2 under the optimised operating conditions. The diclofenac sodium degradation byproducts have been identified using LC/MS analysis.


Assuntos
Diclofenaco/química , Hidrodinâmica , Processos Fotoquímicos , Sonicação/métodos , Catálise , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Pressão , Titânio/química
3.
Ultrason Sonochem ; 21(1): 1-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23968578

RESUMO

Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Sonicação/métodos , Gerenciamento de Resíduos/métodos , Águas Residuárias/química , Hidrodinâmica
4.
Ultrason Sonochem ; 20(5): 1217-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23466006

RESUMO

Sonochemical removal of 2,4-dinitrophenol (DNP) has been investigated using ultrasonic bath, with an operating capacity of 7 L, fitted with a large transducer with longitudinal vibrations having a 1 kW rated power output and operating frequency of 25 kHz. It has been revealed from calorimetric studies that maximum power is dissipated at a capacity of 7 L. The concentration of DNP has been monitored with an objective of evaluation of the efficacy of ultrasonic reactor in combination with process intensifying approaches for the removal of DNP. The effect of operating pH and additives such as hydrogen peroxide and ferrous iron activated persulfate on the extent of removal of DNP has been investigated. It has been observed that the extent of removal is greater at lower pH (pH 2.5 and 4) than at higher pH (pH 10). The combined treatment strategies such as ultrasound (US)/Fenton, US/advanced Fenton and US/CuO/H2O2 have also been investigated with an objective of obtaining complete removal of DNP using hybrid treatment strategies. The extent of removal has been found to increase significantly in US/Fenton process (98.7%) as compared to that using US alone (5.8%) which demonstrates the efficacy of the combined process. First order kinetics has been fitted for all the approaches investigated in the work. Calculations of cavitational yield indicated the superiority of the reactor design as compared to the conventional ultrasonic horn type reactors. The main intermediates formed during the process of removal of DNP have been identified.


Assuntos
2,4-Dinitrofenol/isolamento & purificação , Sonicação , Vibração
5.
Ultrason Sonochem ; 20(5): 1226-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23538121

RESUMO

In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.


Assuntos
2,4-Dinitrofenol/química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Oxirredução , Pressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...