Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38980090

RESUMO

The lifetime of a hydrogen bond between water and dimethyl sulfoxide (DMSO) is found to be considerably longer than that between two water molecules in neat water. This is counter-intuitive because the charge on the oxygen in DMSO is considerably less than that in water. Additionally, the strength of the water-dimethyl sulfoxide (w-D) hydrogen bond is found to be strongly composition dependent; the lifetime of the hydrogen bond is ten times larger at 30% than at very low concentrations. Using computer simulations, we perform microscopic structural and dynamic analysis to find that these anomalies arise at least partly from an "action-at-a-distance" effect where the attraction between the hydrophobic methyl groups results in the self-aggregation of DMSO molecules that "cages" both the rotational and linear motions of the molecules involved. This is reflected in the observed strong correlation of the lifetime with the local coordination number of the associated methyl groups. The elongated w-D h-bond lifetime causes a slowdown of collective dynamics and affects the lifetime of the w-w h-bond. This nonlinear feedback mechanism explains the strong composition dependence of viscosity and is anticipated to play a dominant role in many self-assemblies. Furthermore, the w-D hydrogen bond breaking mechanism changes from low to high DMSO concentration, a phenomenon not anticipated a priori. We introduce a new order parameter-based free energy surface of the bond breaking pathway. A two-dimensional transition state rate theory calculation is performed for the lifetime of the w-D h-bond that is found to be semi-quantitatively accurate.

2.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38856065

RESUMO

In experimental and theoretical studies of glass transition phenomena, one often finds a sharp crossover in dynamical properties at a temperature Tcr. A bifurcation of a relaxation spectrum is also observed at a temperature TB≈Tcr; both lie significantly above the glass transition temperature. In order to better understand these phenomena, we introduce a new model of glass-forming liquids, a binary mixture of prolate and oblate ellipsoids. This model system exhibits sharp thermodynamic and dynamic anomalies, such as the specific heat jump during heating and a sharp variation in the thermal expansion coefficient around a temperature identified as the glass transition temperature, Tg. The same temperature is obtained from the fit of the calculated relaxation times to the Vogel-Fulcher-Tammann (VFT) form. As the temperature is lowered, the calculated single peak rotational relaxation spectrum splits into two peaks at TB above the estimated Tg. Similar bifurcation is also observed in the distribution of short-to-intermediate time translational diffusion. Interrogation of the two peaks reveals a lower extent of dynamic heterogeneity in the population of the faster mode. We observe an unexpected appearance of a sharp peak in the product of rotational relaxation time τ2 and diffusion constant D at a temperature Tcr, close to TB, but above the glass transition temperature. Additionally, we coarse-grain the system into cubic boxes, each containing, on average, ∼62 particles, to study the average dynamical properties. Clear evidence of large-scale sudden changes in the diffusion coefficient and rotational correlation time signals first-order transitions between low and high-mobility domains.

3.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38912634

RESUMO

Fluctuations in energy gap and coupling constants between chromophores can play an important role in absorption and energy transfer across a collection of two-level systems. In photosynthesis, light-induced quantum coherence can affect the efficiency of energy transfer to the designated "trap" state. Theoretically, the interplay between fluctuations and coherence has been studied often, employing either a Markovian or a perturbative approximation. In this study, we depart from these approaches to incorporate memory effects by using Kubo's quantum stochastic Liouville equation. We introduce the effects of decay of the created excitation (to the ground state) on the desired propagation and trapping that provides a direction of flow of the excitation. In the presence of light-induced pumping, we establish a relation between the efficiency, the mean survival time, and the correlation decay time of the bath-induced fluctuations. A decrease in the steady-state coherence during the transition from the non-Markovian regime to the Markovian limit results in a decrease in efficiency. As in the well-known Haken-Strobl model, the ratio of the square of fluctuation strength to the rate plays a critical role in determining the mechanism of energy transfer and in shaping the characteristics of the efficiency profile. We recover a connection between the transfer flux and the imaginary part of coherences in both equilibrium and excited bath states, in both correlated and uncorrelated bath models. We uncover a non-monotonic dependence of efficiency on site energy heterogeneity for both correlated and uncorrelated bath models.

4.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748000

RESUMO

The task of a first principles theoretical calculation of the rate of gas-liquid nucleation has remained largely incomplete despite the existence of reliable results from unbiased simulation studies at large supersaturation. Although the classical nucleation theory formulated by Becker-Doring-Zeldovich about a century ago provides an elegant, widely used picture of nucleation in a first-order phase transition, the theory finds difficulties in predicting the rate accurately, especially in the case of gas-to-liquid nucleation. Here, we use a multiple-order parameter description to construct the nucleation free energy surface needed to calculate the nucleation rate. A multidimensional non-Markovian (MDNM) rate theory formulation that generalizes Langer's well-known nucleation theory by using the Grote-Hynes MDNM treatment is used to obtain the rate of barrier crossing. We find good agreement of the theory with the rate obtained by direct unbiased molecular dynamics simulations-the latter is feasible at large supersaturation, S. The theory gives an experimentally strong dependence of the rate of nucleation on supersaturation, S. Interestingly, we find a strong influence of the frequency-dependent friction coefficient at the barrier top. This arises from multiple recrossings of the barrier surface. We find that a Markovian theory, such as Langer's formulation, fails to capture the rate quantitatively. In addition, the multidimensional transition state theory expression performs poorly, revealing the underlying role of the friction coefficient.

5.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38747998

RESUMO

The celebrated generalized Stokes law predicts that the velocity of a particle pulled through a liquid by an external force, Fex, is directly proportional to the force and inversely proportional to the friction ζ acted by the medium on the particle. We investigate the range of validity of the generalized Stokes law at molecular length scales by employing computer simulations to calculate friction by pulling a tagged particle with a constant force. We thus calculate friction for two model interaction potentials, Lennard-Jones and soft sphere, for several particle sizes, ranging from radius (a) smaller than the solvent particles to three times larger. We next obtain friction from diffusion (D) by using Einstein's relation between diffusion and friction ζ in an unperturbed liquid. We find a quantitative agreement between the two at a small-to-intermediate pulling force regime for all the sizes studied. The law does break down at a large pulling force beyond a threshold value. Importantly, the range of validity of Stokes' scheme to obtain friction increases substantially if we turn off the attractive part of the interaction potential. Additionally, we calculate the viscosity (η) of the unperturbed liquid and find a good agreement with the Stokes-Einstein relation ζ = Cηa for the viscosity dependence with a value of C close to 5 π, which is intermediate between the slip and stick boundary condition.

6.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38506289

RESUMO

Aqueous dimethyl sulfoxide (Aq-DMSO) binary mixture exhibits many fascinating composition-dependent anomalies that are explained by using the peculiarities of the water-DMSO hydrogen bond. Ions can couple strongly to these composition-dependent anomalies to produce exotic dynamics of their own. We carry out theoretical studies using computer simulations to understand the structural and dynamical aspects of rigid monovalent cations (Li+, Na+, K+, Rb+, and Cs+) in aqueous DMSO solutions, with chloride as the counterion. We uncover a number of composition-dependent ion diffusion anomalies, which can be traced back to the interplay between the size-dependent charge density of the ion and the resulting difference in interactions of the ion with water and DMSO molecules. Size and composition dependence of the diffusion coefficients of the five ions exhibit fascinating variations that can be explained partially.

7.
J Phys Chem B ; 128(9): 2076-2086, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38389118

RESUMO

Despite its rigid structure, DNA is a remarkably flexible molecule. Flexibility is essential for biological functions (such as transcription and gene repair), which require large-amplitude structural changes such as bubble formation. The bubbles thus formed are required to have a certain stability of their own and survive long on the time scale of molecular motions. A molecular understanding of fluctuations leading to quasi-stable structures is not available. Through extensive atomistic molecular dynamics simulations, we identify a sequence of microscopic events that culminate in local bubble formation, which is initiated by base-pair (BP) opening, resulting from the cleavage of native BP hydrogen bonds (HBs). This is followed by the formation of mismatched BPs with non-native contacts. These metastable structures can either revert to their original forms or undergo a flipping transition to form a local bubble that can span across 3-4 BPs. A substantial distortion of the DNA backbone and a disruption of BP stacking are observed because of the structural changes induced by these local perturbations. We also explored how water helps in the entire process. A small number of water molecules undergo rearrangement to stabilize the intermediate states by forming HBs with DNA bases. Water thus acts as a lubricant that counteracts the enthalpic penalty suffered from the loss of native BP contacts. Although the process of bubble formation is reversible, the sequence of steps involved poses an entropic barrier, preventing it from easily retracing the path to the native state.


Assuntos
DNA , Água , Conformação de Ácido Nucleico , DNA/química , Pareamento de Bases , Simulação de Dinâmica Molecular
8.
J Phys Chem B ; 127(51): 11031-11044, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38101333

RESUMO

The viscosity of aqueous electrolyte solutions exhibits well-known composition-dependent anomalies that show certain definitive trends and universal features. The viscosity of LiCl and NaCl solutions increases with concentration in a monotonic fashion, while solutions of KCl, RbCl, and CsCl exhibit a more complex behavior. Here, the viscosity first decreases and then increases with increasing concentration, with a rather broad minimum at intermediate concentrations (ca. 1-3 m). To unearth the origin of such puzzling behavior, we carried out detailed molecular-level analyses by interrogating the exact Green-Kubo expression of viscosity in terms of the stress-stress time correlation function (SS-TCF). The total SS-TCF can be decomposed into a collection of three self- and three cross-SS-TCFs arising from the three constituent components (water, cations, and anions). Mode coupling theory (MCT) analysis for the friction on ions and the viscosity of the solution suggests the possible importance of two-particle static and time-dependent cross-correlations between water and the ions. We calculate the viscosity and other dynamical properties for all five electrolyte (LiCl, NaCl, KCl, RbCl, and CsCl) solutions over a range of concentrations, using two models of water (SPC/E and TIP4P/2005). The total viscosity derives non-negligible contributions from all of the terms. The cross-correlations are found to be surprisingly large and seen to play a hidden role in the concentration dependence. However, the importance of cross-correlations is often not discussed. Our study leads to a theoretical understanding of the microscopic origin of the observed anomalies in the composition dependence of viscosity across all five electrolytes.

9.
Phys Rev E ; 107(2-1): 024138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932515

RESUMO

We investigate, by simulations and analytic theory, the sensitivity of nonequilibrium relaxation to interaction potential and dimensionality by using Boltzmann's H function H(t). We evaluate H(t) for three different intermolecular potentials in all three dimensions and find that the well-known H theorem is valid and that the H function exhibits rather strong sensitivity to all these factors. The relaxation of H(t) is long in one dimension, but short in three dimensions, longer for the Lennard-Jones potential than for the hard spheres. The origin of the ultraslow approach to the equilibrium of H(t) in one-dimensional systems is discussed. Importantly, we obtain a closed-form analytic expression for H(t) using the solution of the Fokker-Planck equation for velocity space probability distribution and compare its predictions with the simulation results. Interestingly, H(t) is found to exhibit a linear response when vastly different initial nonequilibrium conditions are employed. The microscopic origin of this linear response is discussed. The oft-quoted relation of H function with Clausius's entropy theorem is discussed.

10.
Phys Rev E ; 107(2-1): 024127, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932553

RESUMO

Diffusion in a multidimensional energy surface with minima and barriers is a problem of importance in statistical mechanics and it also has wide applications, such as protein folding. To understand it in such a system, we carry out theory and simulations of a tagged particle moving on a two-dimensional periodic potential energy surface, both in the presence and absence of noise. Langevin dynamics simulations at multiple temperatures are carried out to obtain the diffusion coefficient of a solute particle. Friction is varied from zero to large values. Diffusive motion emerges in the limit of a long time, even in the absence of noise. Noise destroys the correlations and increases diffusion at small friction. Diffusion thus exhibits a nonmonotonic friction dependence at the intermediate value of the damping, ultimately converging to our theoretically predicted value. The latter is obtained using the well-established relationship between diffusion and random walk. An excellent agreement is obtained between theory and simulations in the high-friction limit but not so in the intermediate regime. We explain the deviation in the low- to intermediate-friction regime using the modified random walk theory. The rate of escape from one cell to another is obtained from the multidimensional rate theory of Langer. We find that enhanced dimensionality plays an important role. To quantify the effects of noise on the potential-imposed coherence on the trajectories, we calculate the Lyapunov exponent. At small friction values, the Lyapunov exponent mimics the friction dependence of the rate.

11.
J Phys Chem B ; 127(9): 1965-1975, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36853997

RESUMO

The coupling between the conformational fluctuations of DNA and its surrounding environment, consisting of water and ions in solution, remains poorly understood and relatively less investigated as compared to proteins. Here, with the help of molecular dynamics simulations and statistical mechanical analyses, we explore the dynamical coupling among DNA, water, and counterions through correlations among respective energy fluctuations in both double- (ds-) and single-stranded (ss-) DNA solutions. Fluctuations in the collective DNA-water and DNA-ion interaction energies are found to be strongly anticorrelated across all the systems. The fluctuations of DNA self-energy, however, are weakly coupled to DNA-water and DNA-ion interactions in ds-DNA. An enhancement of the DNA-water coupling is observed in ss-DNA, where the system is less rigid. All the interaction energies exhibit 1/f noise in their energy power spectra with surprisingly prominent bimodality in the DNA-water and DNA-ion fluctuations. The nature of the energy spectra appears to be indifferent to the relative rigidity of the DNA. We discuss the role of the observed correlations in ion-water motions on a DNA duplex in the experimentally observed anomalous slow dielectric relaxation and solvation dynamics and in furthering our understanding of the DNA energy landscape.


Assuntos
Simulação de Dinâmica Molecular , Água , Proteínas , DNA , Íons
12.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36503907

RESUMO

Long-term immunosuppressive therapy is a drug regimen often used to lower aggressive immune responses in various chronic inflammatory diseases. However, such long-term therapy leading to immune suppression may trigger other adverse reactions in the immune system. The rising concern regarding the optimal dose and duration of such treatment has motivated us to understand non-classical immunomodulatory responses induced by various immunosuppressive steroid and secosteroid drugs such as glucocorticoid and vitamin D supplements. The immunomodulatory actions of such immunosuppressants (that govern the adaptive immune response) are often mediated through their characteristic control over CD4+ T-cells involving pro- and antiinflammatory T-cells. Several early studies attempted to decode temporal and dose-dependent behaviors of such pro- and anti-inflammatory T-cells using the chemical dynamics approach. We first summarize these early works. Then, we develop a minimal coarse-grained kinetic network model to capture the commonality in their immunomodulatory functions. This generic model successfully reproduces the characteristic dynamical features, including the clinical latency period in long-term T-cell dynamics. The temporal behavior of T-cells is found to be sensitive to specific rate parameters and doses of immunosuppressants. The steady-state analysis reflects the transition from an early classified weakly regulated (autoimmune-prone) immune state to a strongly regulated state (immunocompromised state), separated by an intervening state of moderate/balanced regulation. An optimal dose and duration are essential in rescuing balanced immune regulation. This review elucidates how developing a simple generic coarse-grained immune network model may provide immense information that helps diagnose inefficacy in adaptive immune function before and after administering immunosuppressants such as glucocorticoid or vitamin D.


Assuntos
Imunossupressores , Linfócitos T , Imunomodulação , Vitamina D
13.
J Chem Phys ; 157(19): 194703, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414463

RESUMO

We observe, by computer simulations, a remarkable long-distance, rare, but repetitive, exchange of ethanol molecules between two parallel graphene surfaces in nanoconfined, aqueous, ethanol solutions. We compute the rate of exchange as a function of the separation (d) between the two surfaces. We discover that the initiating (or, the launching) step in this exchange is the attainment of an instantaneous orientation of the carbon-oxygen bond vector relative to the graphene surface. This observation led us to construct a two-dimensional free energy surface for this exchange, with respect to two order parameters, namely, (i) the perpendicular distance of ethanol molecule from the graphene surfaces, z, and (ii) the orientation of the O-C bond vector, θ, of the tagged ethanol molecule. For d = 3 nm, the rate of exchange is found to be 0.44 ns-1 for the force field used. We also vary the force field and determine the sensitivity of the rate. From the free energy landscape, one could determine the minimum energy pathway. We use both, the transition state theory and Kramers' theory, to calculate the rate. The calculated rate agrees well with the simulated value as mentioned above. We find that the rate of exchange phenomenon is sensitive to the interaction strength of graphene and the hydrophobic group of ethanol. The free energy landscape exchange shows dependence on the distance separation of the two hydrophobic surfaces and reveals interesting features.

14.
Curr Opin Struct Biol ; 77: 102462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150344

RESUMO

Biological activity requires a solvent that can provide a suitable environment, which satisfies the twin need for stability and the ability to change. Among all the solvents water plays the most important role. We review, analyze, and comment on recent works on the structure and dynamics of water around biomolecules and their role in specific biological functions. While studies in the past have focused on understanding the biomolecule-water interactions through a hydration layer; recently the attention has shifted towards understanding functions at a molecular level. Such a microscopic understanding clearly requires elucidation of detailed dynamical processes where solvent molecules play an important role. Finally, we comment on the advances made in understanding the role of water inside a biological cell.


Assuntos
Simulação de Dinâmica Molecular , Água , Solventes/química , Água/química , Fenômenos Químicos
15.
J Chem Phys ; 156(22): 224501, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705396

RESUMO

We report the existence of disparate static and dynamic correlation lengths that could describe the influence of confinement on nanoconfined water (NCW). Various aspects of viscous properties, such as anisotropy and viscoelasticity, of NCW are studied by varying the separation distance "d" between two confining hydrophobic plates. The transverse component of the mean square stress exhibits slow spatial decay (measured from the surface) beyond ∼1.8 nm, which was not reported before. The static correlation length obtained from fitting the exponential decay of the transverse mean-square stress with d is 0.75 nm, while the decay time of the stress-stress time correlation function gives a dynamic correlation length of only 0.35 nm. The shortness of the dynamic correlation length seems to arise from the low sensitivity of orientational relaxation to confinement. In the frequency-dependent viscosity, we observe a new peak at about 50 cm-1 that is not present in the bulk. This new peak is prominent even at 3 nm separations. The peak is absent in the bulk, although it is close to the intermolecular -O-O-O- bending mode well known in liquid water. We further explore the relationship between diffusion and viscosity in NCW by varying d.

16.
J Chem Phys ; 156(13): 134101, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395878

RESUMO

A theory of barrier crossing rate on a multidimensional reaction energy surface is presented. The theory is a generalization of the earlier theoretical schemes to higher dimensions, with the inclusion of non-Markovian friction along both the reactive and the nonreactive coordinates. The theory additionally includes the bilinear coupling between the reactive and the nonreactive modes at the Hamiltonian level. Under suitable conditions, we recover the rate expressions of Langer and Hynes and establish a connection with the rate treatment of Pollak. Within the phenomenology of generalized Langevin equation description, our formulation provides an improvement over the existing ones because we explicitly include both the non-Markovian effects along the reaction coordinate and the bilinear coupling at the Hamiltonian level. At intermediate-to-large friction, an increase in dimensionality by itself tends to reduce the rate, while the inclusion of the memory effects increases the rate. The theory predicts an increase in rate when off-diagonal friction terms are included. We present a model calculation to study isomerization of a stilbene-like molecule using the prescription of Hochstrasser and co-workers on a two-dimensional reaction energy surface, employing Zwanzig-Bixon hydrodynamic theory of frequency-dependent friction. The calculated rate shows a departure from the predictions of Langer's theory and also from the two-dimensional transition state theory.

17.
Phys Rev Lett ; 128(10): 108101, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35333093

RESUMO

The role of water in biological processes is studied in three reactions, namely, the Fe-CO bond rupture in myoglobin, GB1 unfolding, and insulin dimer dissociation. We compute both internal and external components of friction on relevant reaction coordinates. In all of the three cases, the cross-correlation between forces from protein and water is found to be large and negative that serves to reduce the total friction significantly, increase the calculated reaction rate, and weaken solvent viscosity dependence. The computed force spectrum reveals bimodal 1/f noise, suggesting the use of a non-Markovian rate theory.


Assuntos
Mioglobina , Água , Fricção , Solventes/química , Viscosidade , Água/química
18.
J Chem Sci (Bangalore) ; 133(4): 118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812227

RESUMO

Many known and unknown factors play significant roles in the persistence of an infectious disease, but two that are often ignored in theoretical modelling are the distributions of (i) inherent susceptibility ( σ inh ) and (ii) external infectivity ( ι ext ), in a population. While the former is determined by the immunity of an individual towards a disease, the latter depends on the exposure of a susceptible person to the infection. We model the spatio-temporal propagation of a pandemic as a chemical reaction kinetics on a network using a modified SAIR (Susceptible-Asymptomatic-Infected-Removed) model to include these two distributions. The resulting integro-differential equations are solved using Kinetic Monte Carlo Cellular Automata (KMC-CA) simulations. Coupling between σ inh and ι ext are combined into a new parameter Ω, defined as Ω = σ inh × Î¹ ext ; infection occurs only if the value of Ω is greater than a Pandemic Infection Parameter (PIP), Ω 0 . Not only does this parameter provide a microscopic viewpoint of the reproduction number R0 advocated by the conventional SIR model, but it also takes into consideration the viral load experienced by a susceptible person. We find that the neglect of this coupling could compromise quantitative predictions and lead to incorrect estimates of the infections required to achieve the herd immunity threshold. The figure represents the network model for spread of infectious diseases considered in this work. It also shows the resultant multiwave infection graph by inclusion of inherent susceptibility and external infectivity distributions and migration of infected individuals.

19.
J Phys Chem B ; 125(44): 12274-12291, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726411

RESUMO

Because of the amphiphilic nature of ethanol in the aqueous solution, ions cause an interesting microheterogeneity where the water molecules and the hydroxy groups of ethanol preferentially solvate the ions, while the ethyl groups tend to occupy the intervening space. Using computer simulations, we study the dynamics of rigid monovalent cations (Li+, Na+, K+, and Cs+) in aqueous ethanol solutions with chloride as the counterion. We vary both the size of the ions and the composition of the mixture to explore size- and composition-dependent ion diffusion. The relative stability of enhanced microheterogeneous configurations makes ion diffusion slower than what would be surmised by using the bulk properties of the mixture, using the Stokes-Einstein relation. We study the structure through partial radial distribution functions and the stability through coordination number fluctuations. The ion diffusion coefficient exhibits sharp re-entrant behavior when plotted against viscosity varied by composition. Our studies reveal multiple anomalous features of ion motion in this mixture. We formulate a mode-coupling theory (MCT) that takes into account the interaction between different dynamical components; MCT can incorporate the effects of heterogeneous dynamics and nonlinearity in composition dependence that arise from the feedback between mutually dependent ion-solvent dynamics.


Assuntos
Etanol , Água , Cátions Monovalentes , Difusão , Solventes
20.
J Phys Chem B ; 125(43): 11793-11811, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34674526

RESUMO

Association and dissociation of proteins are important biochemical events. In this Feature Article, we analyze the available studies of these processes for insulin oligomers in aqueous solution. We focus on the solvation of the insulin monomer in water, stability and dissociation of its dimer, and structural integrity of the hexamer. The intricate role of water in solvation of the dimer- and hexamer-forming surfaces, in long-range interactions between the monomers and the stability of the oligomers, is discussed. Ten water molecules inside the central cavity stabilize the structure of the insulin hexamer. We discuss how different order parameters can be used to understand the dissociation of the insulin dimer. The calculation of the rate using a recently computed multidimensional free energy provides considerable insight into the interplay between protein and water dynamics.


Assuntos
Insulina , Água , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...