Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(3): e202400018, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303135

RESUMO

The front cover artwork is provided by the Institute of Analytical and Bioanalytical Chemistry and the Institute of Inorganic Chemistry I at Ulm University within the Collaborative Research Center TRR 234 CataLight. The image shows an algebraic approach to generically calculate and predict the turnover number (TON) and the endpoint of photocatalytic hydrogen gas evolution experiments. Read the full text of the Research Article at 10.1002/cphc.202300767.

2.
Chemphyschem ; 25(3): e202300767, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084394

RESUMO

Photocatalysis is a contemporary research field given that the world's fossil energy resources including coal, mineral oil and natural gas are finite. The vast variety of photocatalytic systems demands for standardized protocols facilitating an objective comparison. While there are commonly accepted performance indicators such as the turnover number (TON) that are usually reported, to date there is no unified concept for the determination of TONs and the endpoint of the reaction during continuous measurements. Herein, we propose an algebraic approach using defined parameters and boundary conditions based on partial-least squares regression for generically calculating and predicting the turnover number and the endpoint of a photocatalytic experiment. Furthermore, the impact of the analysis period was evaluated with respect to the fidelity of the obtained TON, and the influence of the data point density along critical segments of the obtained fitting function is demonstrated.

3.
Chemistry ; 30(1): e202302643, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37754665

RESUMO

Based on quantum chemical calculations, we predict strong solvatochromism in a light-driven molecular photocatalyst for hydrogen generation, that is we show that the electronic and optical properties of the photocatalyst strongly depend on the solvent it is dissolved in. Our calculations in particular indicate a solvent-dependent relocation of the highest occupied molecular orbital (HOMO). Ground-state density functional theory and linear response time-dependent density functional theory calculations were applied in order to investigate the influence of implicit solvents on the structural, electronic and optical properties of a molecular photocatalyst. Only at high dielectric constants of the solvent, is the HOMO located at the metal center of the photosensitizer, whereas at low dielectric constants the HOMO is centered at the metal atom of the catalytically active complex. We elucidate the electronic origins of this strong solvatochromic effect and sketch the consequences of these insights for the use of photocatalysts in different environments.

4.
Angew Chem Int Ed Engl ; 62(44): e202306287, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37519152

RESUMO

Currently, most photosensitizers and catalysts used in the field of artificial photosynthesis are still based on rare earth metals and should thus be utilized as efficiently and economically as possible. While repair of an inactivated catalyst is a potential mitigation strategy, this remains a challenge. State-of-the-art methods are crucial for characterizing reaction products during photocatalysis and repair, and are currently based on invasive analysis techniques limiting real-time access to the involved mechanisms. Herein, we use an innovative in situ technique for detecting both initially evolved hydrogen and after active repair via advanced non-invasive rotational Raman spectroscopy. This facilitates unprecedently accurate monitoring of gaseous reaction products and insight into the mechanism of active repair during light-driven catalysis enabling the identification of relevant mechanistic details along with innovative repair strategies.

5.
Nat Chem ; 14(5): 500-506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132222

RESUMO

The molecular apparatus behind biological photosynthesis retains its long-term functionality through enzymatic repair. However, bioinspired molecular devices designed for artificial photosynthesis, consisting of a photocentre, a bridging ligand and a catalytic centre, can become unstable and break down when their individual modules are structurally compromised, halting their overall functionality and operation. Here we report the active repair of such an artificial photosynthetic molecular device, leading to complete recovery of catalytic activity. We have identified the hydrogenation of the bridging ligand, which inhibits the light-driven electron transfer between the photocentre and catalytic centre, as the deactivation mechanism. As a means of repair, we used the light-driven generation of singlet oxygen, catalysed by the photocentre, to enable the oxidative dehydrogenation of the bridging unit, which leads to the restoration of photocatalytic hydrogen formation.


Assuntos
Luz , Fotossíntese , Transporte de Elétrons , Hidrogênio , Ligantes
6.
Phys Chem Chem Phys ; 23(48): 27397-27403, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34859807

RESUMO

In situ spectroelectrochemical studies focussing on the Franck-Condon region and sub-ns electron transfer processes in Ru(II)-tpphz-Pt(II) based photocatalysts reveal that single-electron reduction effectively hinders intramolecular electron transfer between the photoexcited Ru chromophore and the Pt center.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...