Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 425(16): 2867-77, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23702291

RESUMO

Very few studies have attributed a direct, active, functional role to N-linked glycans. We describe here an N-linked glycan with a unique role for maintaining the active conformation of a protein of the serpin family. The distinguishing feature of serpins is the "stressed-to-relaxed" transition, in which the reactive center loop inserts as a ß-strand into the central ß-sheet A. This transition forms the basis for the conversion of serpins to the inactive latent state. We demonstrate that plasminogen activator inhibitor-1 (PAI-1) from zebrafish converts to the latent state about 5-fold slower than human PAI-1. In contrast to human PAI-1, fish PAI-1 carries a single N-linked glycan at Asn185 in the gate region through which the reactive center loop passes during latency transition. While the latency transition of human PAI-1 is unaffected by deglycosylation, deglycosylated zebrafish PAI-1 (zfPAI-1) goes latent about 50-fold faster than the glycosylated zfPAI-1 and about 25-fold faster than non-glycosylated human PAI-1. X-ray crystal structure analysis of glycosylated fish PAI-1 confirmed the presence of an N-linked glycan in the gate region and a lack of glycan-induced structural changes. Thus, latency transition of zfPAI-1 is delayed by steric hindrance from the glycan in the gate region. Our findings reveal a previously unknown mechanism for inhibition of protein conformational changes by steric hindrance from N-linked glycans.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Dobramento de Proteína , Animais , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Análise de Sequência de DNA , Peixe-Zebra
2.
J Biol Chem ; 287(33): 27526-36, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733817

RESUMO

Plasminogen activation catalyzed by urokinase-type plasminogen activator (uPA) plays an important role in normal and pathological tissue remodeling processes. Since its discovery in the mid-1980s, the cell membrane-anchored urokinase-type plasminogen activator receptor (uPAR) has been believed to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding activity could be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/metabolismo , Plasminogênio/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Estrutura Terciária de Proteína , Ativador de Plasminogênio Tipo Uroquinase/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...