Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Carcinogenesis ; 40(10): 1179-1190, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31219154

RESUMO

In pre-clinical models, co-existence of Human Epidermal Growth Factor Receptor-2 (HER2)-amplification and PI3K catalytic subunit (PIK3CA) mutations results in aggressive, anti-HER2 therapy-resistant breast tumors. This is not always reflected in clinical setting. We speculated that the complex interaction between the HER2 and PIK3CA oncogenes is responsible for such inconsistency. We performed series of biochemical, molecular and cellular assays on genetically engineered isogenic mammary epithelial cell lines and breast cancer cells expressing both oncogenes. In vitro observations were validated in xenografts models. We showed that H1047R, one of the most common PIK3CA mutations, is responsible for endowing a senescence-like state in mammary epithelial cells overexpressing HER2. Instead of imposing a permanent growth arrest characteristic of oncogene-induced senescence, the proteome secreted by the mutant cells promotes stem cell enrichment, angiogenesis, epithelial-to-mesenchymal transition, altered immune surveillance and acute vulnerability toward HSP90 inhibition. We inferred that the pleiotropism, as observed here, conferred by the mutated oncogene, depending on the host microenvironment, contributes to conflicting pre-clinical and clinical characteristics of HER2+, mutated PIK3CA-bearing tumor cells. We also came up with a plausible model for evolution of breast tumors from mammary epithelial cells harboring these two molecular lesions.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Senescência Celular , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mutação , Receptor ErbB-2/metabolismo , Animais , Apoptose , Mama/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Transição Epitelial-Mesenquimal , Feminino , Proteínas de Choque Térmico HSP90/genética , Humanos , Camundongos , Camundongos Nus , Receptor ErbB-2/genética
3.
Toxicol Sci ; 139(1): 257-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24496638

RESUMO

Dithiocarbamates (DTC), a sulfhydryl group containing compounds, are extensively used by humans that include metam and thiram due to their pesticide properties, and disulfiram (DSF) as an alcohol deterrent. We screened these DTC in an osteoblast viability assay. DSF exhibited the highest cytotoxicity (IC50 488nM). Loss in osteoblast viability and proliferation was due to induction of apoptosis via G1 arrest. DSF treatment to osteoblasts reduced glutathione (GSH) levels and exogenous addition of GSH prevented DSF-induced reactive oxygen species generation and osteoblast apoptosis. DSF also inhibited osteoblast differentiation in vitro and in vivo, and the effect was associated with inhibition of aldehyde dehydrogenase (ALDH) activity. Out of various ALDH isozymes, osteoblasts expressed only ALDH2 and DSF downregulated its transcript as well as activity. Alda-1, a specific activator of ALDH2, stimulated osteoblast differentiation. Subcutaneous injection of DSF over the calvarium of new born rats reduced the differentiation phenotype of calvarial osteoblasts but increased the mRNA levels of Runx-2 and osteocalcin. DSF treatment at a human-equivalent dose of 30 mg/kg p.o. to adult Sprague Dawley rats caused trabecular osteopenia and suppressed the formation of mineralized nodule by bone marrow stromal cells. Moreover, DSF diminished bone regeneration at the fracture site. In growing rats, DSF diminished growth plate height, primary and secondary spongiosa, mineralized osteoid and trabecular strength. Substantial decreased bone formation was also observed in the cortical site of these rats. We conclude that DSF has a strong osteopenia inducing effect by impairing osteoblast survival and differentiation due to the inhibition of ALDH2 function.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Doenças Ósseas Metabólicas/induzido quimicamente , Dissulfiram/toxicidade , Osteoblastos/efeitos dos fármacos , Aldeído Desidrogenase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Primers do DNA , Glutationa/metabolismo , Osteoblastos/citologia , Osteoblastos/enzimologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...