Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5704, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459080

RESUMO

Line waves (LWs) refer to confined edge modes that propagate along the interface of dual electromagnetic metasurfaces while maintaining mirror reflection symmetries. Previous research has both theoretically and experimentally investigated these waves, revealing their presence in the microwave and terahertz frequency ranges. In addition, a comprehensive exploration has been conducted on the implementation of non-Hermitian LWs by establishing the parity-time symmetry. This study introduces a cutting-edge dual-band line-wave waveguide, enabling the realization of LWs within the terahertz and infrared spectrums. Our work is centered around analyzing the functionalities of existing applications of LWs within a specific field. In addition, a novel non-Hermitian platform is proposed. We address feasible practical implementations of non-Hermitian LWs by placing a graphene-based metasurface on an epsilon-near-zero material. This study delves into the advantages of the proposed framework compared to previously examined structures, involving both analytical and numerical examinations of how these waves propagate and the underlying physical mechanisms.

2.
Sci Rep ; 14(1): 6832, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514655

RESUMO

This article introduces two transmissive metasurfaces applied to normal windows, aiming to improve the 5G outdoor-to-indoor (O2I) coverage. These windows can be utilized in various settings, such as vehicles or buildings. The proposed unit cells, designed to be wide-incident angle and polarization insensitive, are implemented in both single-glazing and double-glazing glasses, arranged in a periodic structure to form the transmission surfaces. Both metasurfaces maintain optical transparency by incorporating Indium Tin Oxide (ITO) as the conductive element in each unit cell. These engineered transmission surfaces enhance the 5G signal indoor coverage at the 3.5 GHz band across a broad range of incident angles. While multi-layer structures typically exhibit heightened sensitivity to the angle of incidence, the proposed two-layered transmissive surfaces demonstrate substantial angular stability, reaching up to 65 and 75 degrees for double- and single-glazed glass, respectively. To achieve this wide and stable angular response, evolutionary optimization techniques were employed to fine-tune the proposed unit cells. Both designs exhibit a high transmission coefficient across the operating frequency for a variety of incident angles, surpassing those reported in the existing literature. Experimental evaluations of the fabricated prototypes indicate that both metasurfaces hold significant potential for enhancing signal propagation into buildings and vehicles.

3.
Opt Lett ; 43(9): 2010-2013, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714733

RESUMO

We show that a plasmonic semiconductor substrate can support highly confined surface plasmons when it is covered by a graphene layer. This occurs when the imaginary part of graphene conductivity and real part of the effective permittivity of the surrounding medium become simultaneously negative. Full-wave electromagnetic simulations demonstrate the occurrence of negative refraction and two-dimensional lensing at the interface separating regions supporting conventional right-handed graphene plasmons and left-handed surface plasmon polaritons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...