Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36981102

RESUMO

Geographic origin and terroir are very important parameters for wine and significantly impact price. Incorrect declarations are known to occur intentionally to increase profit, thus, measures for control are required. Accompanying paperwork has been shown to be unreliable, thus, control of the product itself is required. Here we investigate and compare the stable isotope pattern of South African (Western Cape Province) wine, and evaluate its potential for discrimination from Central European/Austrian wine. The results show that the isotope values of the investigated South African wine samples differ significantly from the values of average Austrian (Central European) wines. Thus, a differentiation of the products from these two regions by stable isotope analysis is generally straightforward. However, the data suggest that vintages from years with exceptionally hot and dry summer weather in Europe may reduce the differentiation between these regions. Therefore, this method is a potent tool for the discrimination of Austrian (Central European) and South African wines under current climatic conditions, although drier and hotter summer weather in Europe, which is likely to occur more frequently due to global climate change, may require further method adjustments in the future.

2.
Microorganisms ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144447

RESUMO

Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.

3.
PLoS One ; 16(7): e0254919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292980

RESUMO

Anecdotal evidence suggests that spontaneous alcoholic fermentation of grape juice is becoming a more popular option in global wine production. Wines produced from the same grape juice by inoculation or spontaneous fermentation usually present distinct chemical and sensorial profiles. Inoculation has been associated with more similar end-products, a loss of typicity, and lower aroma complexity, and it has been suggested that this may be linked to suppression of the local or regional wine microbial ecosystems responsible for spontaneous fermentations. However, whether inoculated fermentations of different juices from different regions really end up with a narrower, less diverse chemical profile than those of spontaneously fermented juices has never been properly investigated. To address this question, we used grape juice from three different varieties, Grüner Veltliner (white), Zweigelt (red), and Pinot noir (red), originating from different regions in Austria to compare spontaneous and single active dry yeast strains inoculated fermentations of the same grape samples. The chemical analysis covered primary metabolites such as glycerol, ethanol and organic acids, and volatile secondary metabolites, including more than 40 major and minor esters, as well as higher alcohols and volatile fatty acids, allowing an in depth statistical evaluation of differences between fermentation strategies. The fungal (mainly yeast) communities throughout fermentations were monitored using automated ribosomal intergenic spacer analysis. The data provide evidence that inoculation with single active dry yeast strains limits the diversity of the chemical fingerprints. The fungal community profiles clearly show that inoculation had an effect on fermentation dynamics and resulted in chemically less diverse wines.


Assuntos
Ecossistema , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Vitis , Vinho/análise , Áustria
4.
Sci Rep ; 10(1): 4911, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188881

RESUMO

Spontaneous wine fermentation is characterized by yeast population evolution, modulated by complex physical and metabolic interactions amongst various species. The contribution of any given species to the final wine character and aroma will depend on its numerical persistence during the fermentation process. Studies have primarily evaluated the effect of physical and chemical factors such as osmotic pressure, pH, temperature and nutrient availability on mono- or mixed-cultures comprising 2-3 species, but information about how interspecies ecological interactions in the wine fermentation ecosystem contribute to population dynamics remains scant. Therefore, in the current study, the effect of temperature and sulphur dioxide (SO2) on the dynamics of a multi-species yeast consortium was evaluated in three different matrices including synthetic grape juice, Chenin blanc and Grechetto bianco. The population dynamics were affected by temperature and SO2, reflecting differences in stress resistance and habitat preferences of the different species and influencing the production of most volatile aroma compounds. Evidently at 15 °C and in the absence of SO2 non-Saccharomyces species were dominant, whereas at 25 °C and when 30 mg/L SO2 was added S. cerevisiae dominated. Population growth followed similar patterns in the three matrices independently of the conditions. The data show that fermentation stresses lead to an individual response of each species, but that this response is strongly influenced by the interactions between species within the ecosystem. Thus, our data suggest that ecological interactions, and not only physico-chemical conditions, are a dominant factor in determining the contribution of individual species to the outcome of the fermentation.


Assuntos
Fermentação , Microbiologia de Alimentos , Microbiota , Saccharomyces cerevisiae , Vinho , Sucos de Frutas e Vegetais/microbiologia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo , Temperatura , Vitis
6.
Artigo em Inglês | MEDLINE | ID: mdl-30483500

RESUMO

Natural alcoholic fermentation is initiated by a diverse population of several non-Saccharomyces yeast species. However, most of the species progressively die off, leaving only a few strongly fermentative species, mainly Saccharomyces cerevisiae. The relative performance of each yeast species is dependent on its fermentation capacity, initial cell density, ecological interactions as well as tolerance to environmental factors. However, the fundamental rules underlying the working of the wine ecosystem are not fully understood. Here we use variation in cell density as a tool to evaluate the impact of individual non-Saccharomyces wine yeast species on fermentation kinetics and population dynamics of a multi-species yeast consortium in synthetic grape juice fermentation. Furthermore, the impact of individual species on aromatic properties of wine was investigated, using Gas Chromatography-Flame Ionization Detector. Fermentation kinetics was affected by the inoculation treatment. The results show that some non-Saccharomyces species support or inhibit the growth of other non-Saccharomyces species in the multi-species consortium. Overall, the fermentation inoculated with a high cell density of Starmerella bacillaris displayed the fastest fermentation kinetics while fermentation inoculated with Hanseniaspora vineae showed the slowest kinetics. The production of major volatiles was strongly affected by the treatments, and the aromatic signature could in some cases be linked to specific non-Saccharomyces species. In particular, Wickerhamomyces anomalus at high cell density contributed to elevated levels of 2-Phenylethan-1-ol whereas Starm. bacillaris at high cell density resulted in the high production of 2-methylpropanoic acid and 3-Hydroxybutanone. The data revealed possible direct and indirect influences of individual non-Saccharomyces species within a complex consortium, on wine chemical composition.

7.
Front Microbiol ; 8: 1988, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085347

RESUMO

Natural, also referred to as spontaneous wine fermentations, are carried out by the native microbiota of the grape juice, without inoculation of selected, industrially produced yeast or bacterial strains. Such fermentations are commonly initiated by non-Saccharomyces yeast species that numerically dominate the must. Community composition and numerical dominance of species vary significantly between individual musts, but Saccharomyces cerevisiae will in most cases dominate the late stages of the fermentation and complete the process. Nevertheless, non-Saccharomyces species contribute significantly, positively or negatively, to the character and quality of the final product. The contribution is species and strain dependent and will depend on each species or strain's absolute and relative contribution to total metabolically active biomass, and will therefore, be a function of its relative fitness within the microbial ecosystem. However, the population dynamics of multispecies fermentations are not well understood. Consequently, the oenological potential of the microbiome in any given grape must, can currently not be evaluated or predicted. To better characterize the rules that govern the complex wine microbial ecosystem, a model yeast consortium comprising eight species commonly encountered in South African grape musts and an ARISA based method to monitor their dynamics were developed and validated. The dynamics of these species were evaluated in synthetic must in the presence or absence of S. cerevisiae using direct viable counts and ARISA. The data show that S. cerevisiae specifically suppresses certain species while appearing to favor the persistence of other species. Growth dynamics in Chenin blanc grape must fermentation was monitored only through viable counts. The interactions observed in the synthetic must, were upheld in the natural must fermentations, suggesting the broad applicability of the observed ecosystem dynamics. Importantly, the presence of indigenous yeast populations did not appear to affect the broad interaction patterns between the consortium species. The data show that the wine ecosystem is characterized by both mutually supportive and inhibitory species. The current study presents a first step in the development of a model to predict the oenological potential of any given wine mycobiome.

8.
PLoS One ; 10(8): e0136249, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317200

RESUMO

Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.


Assuntos
Genes Fúngicos/fisiologia , Consórcios Microbianos/fisiologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento , Floculação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...