Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 40(12): 3413-3423, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34086562

RESUMO

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public.


Assuntos
Algoritmos , Núcleo Celular , Humanos , Processamento de Imagem Assistida por Computador
2.
IEEE J Biomed Health Inform ; 25(7): 2665-2672, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33211667

RESUMO

Anatomical image segmentation is one of the foundations for medical planning. Recently, convolutional neural networks (CNN) have achieved much success in segmenting volumetric (3D) images when a large number of fully annotated 3D samples are available. However, rarely a volumetric medical image dataset containing a sufficient number of segmented 3D images is accessible since providing manual segmentation masks is monotonous and time-consuming. Thus, to alleviate the burden of manual annotation, we attempt to effectively train a 3D CNN using a sparse annotation where ground truth on just one 2D slice of the axial axis of each training 3D image is available. To tackle this problem, we propose a self-training framework that alternates between two steps consisting of assigning pseudo annotations to unlabeled voxels and updating the 3D segmentation network by employing both the labeled and pseudo labeled voxels. To produce pseudo labels more accurately, we benefit from both propagation of labels (or pseudo-labels) between adjacent slices and 3D processing of voxels. More precisely, a 2D registration-based method is proposed to gradually propagate labels between consecutive 2D slices and a 3D U-Net is employed to utilize volumetric information. Ablation studies on benchmarks show that cooperation between the 2D registration and the 3D segmentation provides accurate pseudo-labels that enable the segmentation network to be trained effectively when for each training sample only even one segmented slice by an expert is available. Our method is assessed on the CHAOS and Visceral datasets to segment abdominal organs. Results demonstrate that despite utilizing just one segmented slice for each 3D image (that is weaker supervision in comparison with the compared weakly supervised methods) can result in higher performance and also achieve closer results to the fully supervised manner.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...