Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Test Anal ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062938

RESUMO

The emergence of new synthetic cannabinoid receptor agonists (SCRAs) onto the illicit drugs market continues to cause harm, and the overall availability of physicochemical and pharmacokinetic data for new psychoactive substances is lacking. The lipophilicity of 23 SCRAs and the plasma protein binding (PPB) of 11 SCRAs was determined. Lipophilicity was determined using a validated chromatographic hydrophobicity index (CHI) log D method; tested SCRAs showed moderate to high lipophilicity, with experimental log D7.4 ranging from 2.48 (AB-FUBINACA) to 4.95 (4F-ABUTINACA). These results were also compared to in silico predictions generated using seven commercially available software packages and online tools (Canvas; ChemDraw; Gastroplus; MoKa; PreADMET; SwissADME; and XlogP). Licenced, dedicated software packages provided more accurate lipophilicity predictions than those which were free or had prediction as a secondary function; however, the latter still provided competitive estimates in most cases. PPB of tested SCRAs, as determined by equilibrium dialysis, was in the upper range of the lipophilicity scale, ranging from 90.8% (ADB-BUTINACA) to 99.9% (BZO-HEXOXIZID). The high PPB of these drugs may contribute to reduced rate of clearance and extended durations of pharmacological effects compared to lesser-bound SCRAs. The presented data improve understanding of the behaviour of these drugs in the body. Ultimately, similar data and predictions may be used in the prediction of the structure and properties of drugs yet to emerge on the illicit market.

2.
J Anal Toxicol ; 47(9): 826-834, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37747838

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) remain a major public health concern, with their use implicated in intoxications and drug-related deaths worldwide. Increasing our systematic understanding of SCRA metabolism supports clinical and forensic toxicology casework, facilitating the timely identification of analytical targets for toxicological screening procedures and confirmatory analysis. This is particularly important as new SCRAs continue to emerge on the illicit drug market. In this work, the metabolism of ADB-HEXINACA (ADB-HINACA, N-[1-amino-3,3-dimethyl-1-oxobutan-2-yl]-1-hexyl-1H-indazole-3-carboxamide), which has increased in prevalence in the United Kingdom and other jurisdictions, was investigated using in vitro techniques. The (S)-enantiomer of ADB-HEXINACA was incubated with pooled human hepatocytes over 3 hours to identify unique and abundant metabolites using liquid chromatography-quadrupole time-of-flight mass spectrometry. In total, 16 metabolites were identified, resulting from mono-hydroxylation, di-hydroxylation, ketone formation (mono-hydroxylation then dehydrogenation), carboxylic acid formation, terminal amide hydrolysis, dihydrodiol formation, glucuronidation and combinations thereof. The majority of metabolism took place on the hexyl tail, forming ketone and mono-hydroxylated products. The major metabolite was the 5-oxo-hexyl product (M9), while the most significant mono-hydroxylation product was the 4-hydroxy-hexyl product (M8), both of which were confirmed by comparison to in-house synthesized reference standards. The 5-hydroxy-hexyl (M6) and 6-hydroxy-hexyl (M7) metabolites were not chromatographically resolved, and the 5-hydroxy-hexyl product was the second largest mono-hydroxylated metabolite. The structures of the terminal amide hydrolysis products without (M16, third largest metabolite) and with the 5-positioned ketone (M13) were also confirmed by comparison to synthesized reference standards, along with the 4-oxo-hexyl metabolite (M11). The 5-oxo-hexyl and 4-hydroxy-hexyl metabolites are suggested as biomarkers for ADB-HEXINACA consumption.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Humanos , Agonistas de Receptores de Canabinoides/metabolismo , Canabinoides/análise , Espectrometria de Massas em Tandem/métodos , Metaboloma , Padrões de Referência , Hepatócitos/metabolismo , Amidas/metabolismo , Cetonas/metabolismo , Microssomos Hepáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...