Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18932, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919357

RESUMO

Geomagnetic storms of G1-class were observed on 3 and 4 February 2022, which caused the loss of 38 out of 49 SpaceX satellites during their launch due to enhanced neutral density. The effects of storm-time neutral dynamics and electrodynamics over the American sector during this minor storm have been investigated using Global Positioning System-total electron content (TEC) and Global-scale Observations of the Limb and Disk (GOLD) mission measured thermospheric composition and temperature. Results revealed an unexpected feature in terms of increase in O/N2 and depletion in TEC over the American low-latitudes. This feature is in addition to the classic storm time ionospheric variations of enhancement in ionospheric electron density in presence of enhanced O/N2 and an intense equatorial electrojet (EEJ). Further, significant morning-noon electron density reductions were observed over the southern mid-high latitudes along the American longitudes. Results from Multiscale Atmosphere-Geospace Environment (MAGE) model simulations elucidated storm-induced equatorward thermospheric wind which caused the strong morning counter electrojet by generating the disturbance dynamo electric field. This further explains the morning TEC depletion at low-latitudes despite an increase in O/N2. Sub-storm related magnetospheric convection resulted in significant noon-time peak in EEJ on 4 February. Observation and modelling approaches together suggested that combined effects of storm-time neutral dynamic and electrodynamic forcing resulted in significant ionospheric variations over the American sector during minor geomagnetic storms.

2.
Sci Rep ; 10(1): 5232, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251306

RESUMO

Using the specific satellite line of sight geometry and station location with respect to the source, Thomas et al. [Scientific Reports, https://doi.org/10.1038/s41598-018-30476-9] developed a method to infer the detection altitude of co-seismic ionospheric perturbations observed in Global Positioning System (GPS) - Total Electron Content (TEC) measurements during the Mw 7.4 March 9, 2011 Sanriku-Oki earthquake, a foreshock of the Mw 9.0, March 11, 2011 Tohoku-Oki earthquake. Therefore, in addition to the spatio-temporal evolution, the altitude information of the seismically induced ionospheric signatures can also be derived now using GPS-TEC technique. However, this method considered a point source, in terms of a small rupture area (~90 km) during the Tohoku foreshock, for the generation of seismo-acoustic waves in 3D space and time. In this article, we explore further efficacy of GPS-TEC technique during co-seismic ionospheric sounding for an extended seismic source varying simultaneously in space and time akin to the rupture of Mw 9.0 Tohoku-Oki mainshock and the limitations to be aware of in such context. With the successful execution of the method by Thomas et al. during the Tohoku-Oki mainshock, we not only estimate the detection altitude of GPS-TEC derived co-seismic ionospheric signatures but also delineate, for the first time, distinct ground seismic sources responsible for the generation of these perturbations, which evolved during the initial 60 seconds of the rupture. Simulated tsunami water excitation over the fault region, to envisage the evolution of crustal deformation in space and time along the rupture, formed the base for our model analysis. Further, the simulated water displacement assists our proposed novel approach to delineate the ground seismic sources entirely based on the ensuing ionospheric perturbations which were otherwise not well reproduced by the ground rupture process within this stipulated time. Despite providing the novel information on the segmentation of the Tohoku-Oki seismic source based on the co-seismic ionospheric response to the initial 60 seconds of the event, our model could not reproduce precise rupture kinematics over this period. This shortcoming is also credited to the specific GPS satellite-station viewing geometries.

3.
Sci Rep ; 9(1): 18640, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819071

RESUMO

Global Navigation Satellite System (GNSS) measured Total Electron Content (TEC) is now widely used to study the near and far-field coseismic ionospheric perturbations (CIP). The generation of near field (~500-600 km surrounding an epicenter) CIP is mainly attributed to the coseismic crustal deformation. The azimuthal distribution of near field CIP may contain information on the seismic/tectonic source characteristics of rupture propagation direction and thrust orientations. However, numerous studies cautioned that before deriving the listed source characteristics based on coseismic TEC signatures, the contribution of non-tectonic forcing mechanisms needs to be examined. These mechanisms which are operative at ionospheric altitudes are classified as the i) orientation between the geomagnetic field and tectonically induced atmospheric wave perturbations ii) orientation between the GNSS satellite line of sight (LOS) geometry and coseismic atmospheric wave perturbations and iii) ambient electron density gradients. So far, the combined effects of these mechanisms have not been quantified. We propose a 3D geometrical model, based on acoustic ray tracing in space and time to estimate the combined effects of non-tectonic forcing mechanisms on the manifestations of GNSS measured near field CIP. Further, this model is tested on earthquakes occurring at different latitudes with a view to quickly quantify the collective effects of these mechanisms. We presume that this simple and direct 3D model would induce and enhance a proper perception among the researchers about the tectonic source characteristics derived based on the corresponding ionospheric manifestations.

4.
Sci Rep ; 8(1): 16453, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382150

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 8(1): 12105, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108250

RESUMO

GPS-derived Total Electron Content (TEC) is an integrated quantity; hence it is difficult to relate the detection of ionospheric perturbations in TEC to a precise altitude. As TEC is weighted by the maximum ionospheric density, the corresponding altitude (hmF2) is, generally, assumed as the perturbation detection altitude. To investigate the validity of this assumption in detail, we conduct an accurate analysis of the GPS-TEC measured early ionospheric signatures related to the vertical surface displacement of the Mw 7.4 Sanriku-Oki earthquake (Sanriku-Oki Tohoku foreshock). Using 3D acoustic ray tracing model to describe the evolution of the propagating seismo-acoustic wave in space and time, we demonstrate how to infer the detection altitude of these early signatures in TEC. We determine that the signatures can be detected at altitudes up to ~130 km below the hmF2. This peculiar behaviour is attributed to the satellite line of sight (LOS) geometry and station location with respect to the source, which allows one to sound the co-seismic ionospheric signatures directly above the rupture area. We show that the early onset times correspond to crossing of the LOS with the acoustic wavefront at lower ionospheric altitudes. To support the proposed approach, we further reconstruct the seismo-acoustic induced ionospheric signatures for a moving satellite in the presence of a geomagnetic field. Both the 3D acoustic ray tracing model and the synthetic waveforms from the 3D coupled model substantiate the observed onset time of the ionospheric signatures. Moreover, our simple 3D acoustic ray tracing approach allows one to extend this analysis to azimuths different than that of the station-source line.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...