Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37440178

RESUMO

Early-life cues shape the immune system during adulthood. However, early-life signaling pathways and their temporal functions are not well understood. Herein, we demonstrate that the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2), which are E3 ubiquitin ligases, sustain interleukin (IL)-17-producing γ δ T cells (γδT17) and group 3 innate lymphoid cells (ILC3) during late neonatal and prepubescent life. We show that cell-intrinsic deficiency of cIAP1/2 at 3-4 wk of life leads to downregulation of the transcription factors cMAF and RORγt and failure to enter the cell cycle, followed by progressive loss of γδT17 cells and ILC3 during aging. Mice deficient in cIAP1/2 have severely reduced γδT17 cells and ILC3, present with suboptimal γδT17 responses in the skin, lack intestinal isolated lymphoid follicles, and cannot control intestinal bacterial infection. Mechanistically, these effects appear to be dependent on overt activation of the non-canonical NF-κB pathway. Our data identify cIAP1/2 as early-life molecular switches that establish effective type 3 immunity during aging.


Assuntos
Imunidade Inata , Ubiquitina , Camundongos , Animais , Linfócitos , Interleucinas/metabolismo , Envelhecimento
2.
Cancers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572874

RESUMO

In recent years, checkpoint inhibitor (CPI) therapy has shown promising clinical responses across a broad range of cancers. However, many patients remain unresponsive and there is need for improvement. CPI therapy relies on antibody-mediated neutralization of immune inhibitory or checkpoint receptors (ICRs) that constitutively suppress leukocytes. In this regard, the clinical outcome of CPI therapy has primarily been attributed to modulating classical MHC-restricted αß T cell responses, yet, it will inevitably target most lymphoid (and many myeloid) populations. As such, unconventional non-MHC-restricted gamma delta (γδ) T, mucosal associated invariant T (MAIT) and natural killer T (NKT) cells express ICRs at steady-state and after activation and may thus be affected by CPI therapies. To which extent, however, remains unclear. These unconventional T cells are polyfunctional innate-like lymphocytes that play a key role in tumor immune surveillance and have a plethora of protective and pathogenic immune responses. The robust anti-tumor potential of γδ T, MAIT, and NKT cells has been established in a variety of preclinical cancer models and in clinical reports. In contrast, recent studies have documented a pro-tumor effect of innate-like T cell subsets that secrete pro-inflammatory cytokines. Consequently, understanding the mechanisms that regulate such T cells and their response to CPI is critical in designing effective cancer immunotherapies that favor anti-tumor immunity. In this Review, we will discuss the current understanding regarding the role of immune checkpoint regulation in γδ T, MAIT, and NKT cells and its importance in anti-cancer immunity.

3.
Oncotarget ; 11(32): 3048-3060, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32850009

RESUMO

Metronomic chemotherapy refers to the minimum biologically effective doses of a chemotherapy agent given as a continuous regimen without extended rest periods. Drug repurposing is defined as the use of an already known drug for a new medical indication, different from the original one. In oncology the combination of these two therapeutic approaches is called "Metronomics". The aim of this work is to evaluate the therapeutic effect of cyclophosphamide in a metronomic schedule in combination with the repurposed drug losartan in two genetically different mice models of triple negative breast cancer. Our findings showed that adding losartan to metronomic cyclophosphamide significantly improved the therapeutic outcome. In both models the combined treatment increased the mice's survival without sings of toxicity. Moreover, we elucidated some of the mechanisms of action involved, which include a decrease of intratumor hypoxia, stimulation of the immune response and remodeling of the tumor microenvironment. The remarkable therapeutic effect, the lack of toxicity, the low cost of the drugs and its oral administration, strongly suggest its translation to the clinical setting in the near future.

4.
J Biol Chem ; 294(13): 5060-5073, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30655292

RESUMO

Isoprenyl cysteine carboxyl methyltransferase (ICMT) plays a key role in post-translational regulation of prenylated proteins. On the basis of previous results, we hypothesized that the p53 pathway and ICMT expression may be linked in cancer cells. Here, we studied whether WT p53 and cancer-associated p53 point mutants regulate ICMT levels and whether ICMT overexpression affects tumor progression. Studying the effect of p53 variants on ICMT mRNA and protein levels in cancer cells, we found that WT p53 and p53 mutants differentially affect ICMT expression, indicating that p53 status influences ICMT levels in tumors. To investigate the underlying mechanisms, we constructed ICMT-luciferase reporters and found that WT p53 represses ICMT transcription. In contrast, p53 mutants showed a positive effect on ICMT expression. Promoter truncation analyses pinpointed the repressive effect of WT p53 to the -209 and -14 region on the ICMT promoter, and ChIP assays indicated that WT p53 is recruited to this region. Instead, a different promoter region was identified as responsible for the mutant p53 effect. Studying the effect of ICMT overexpression on tumor-associated phenotypes in vitro and in vivo, and analyzing breast and lung cancer databases, we identified a correlation between p53 status and ICMT expression in breast and lung cancers. Moreover, we observed that ICMT overexpression is correlated with negative clinical outcomes. Our work unveils a link between postprenylation protein processing and the p53 pathway, indicating that the functional interplay between WT and mutant p53 alters ICMT levels, thereby affecting tumor aggressiveness.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Metiltransferases/genética , Proteína Supressora de Tumor p53/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Neoplasias/patologia
5.
AAPS PharmSciTech ; 19(8): 3734-3741, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30255471

RESUMO

Drug repositioning refers to the identification of new therapeutic indications for drugs already approved. Albendazole and ricobendazole have been used as anti-parasitic drugs for many years; their therapeutic action is based on the inhibition of microtubule formation. Therefore, the study of their properties as antitumor compounds and the design of an appropriate formulation for cancer therapy is an interesting issue to investigate. The selected compounds are poorly soluble in water, and consequently, they have low and erratic bioavailability. In order to improve their biopharmaceutics properties, several formulations employing cyclodextrin inclusion complexes were developed. To carefully evaluate the in vitro and in vivo antitumor activity of these drugs and their complexes, several studies were performed on a breast cancer cell line (4T1) and BALB/c mice. In vitro studies showed that albendazole presented improved antitumor activity compared with ricobendazole. Furthermore, albendazole:citrate-ß-cyclodextrin complex decreased significantly 4T1 cell growth both in in vitro and in vivo experiments. Thus, new formulations for anti-parasitic drugs could help to reposition them for new therapeutic indications, offering safer and more effective treatments by using a well-known drug.


Assuntos
Antiparasitários/administração & dosagem , Ciclodextrinas/administração & dosagem , Reposicionamento de Medicamentos/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Albendazol/administração & dosagem , Albendazol/análogos & derivados , Albendazol/química , Animais , Antiparasitários/química , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ciclodextrinas/química , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia , Difração de Raios X , beta-Ciclodextrinas/administração & dosagem , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...