Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb Haemost ; 111(1): 140-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24136115

RESUMO

Matrix metalloproteinase (MMP) activity is generally associated with normal or pathological extracellular processes such as tissue remodelling in growth and development or in tumor metastasis and angiogenesis. Platelets contain at least three MMPs, 1, 2 and 9 that have been reported to stimulate or inhibit agonist-induced platelet aggregation via extracellular signals. The non-selective Zn+2 chelating MMP inhibitor, 1,10-phenanthroline, and the serine protease inhibitor, AEBSF, were found to inhibit all tested agonist-induced platelet aggregation reactions. In vitro analysis demonstrated that 1,10-phenanthroline completely inhibited MMP-1,2,and 9 but had little to no effect on calpain activity while the converse was true with AEBSF. We now demonstrate that MMP-2 functions intracellularly to regulate agonist-induced platelet aggregations via the hydrolytic activation of talin, the presumed final activating factor of glycoprotein (GP)IIb/IIIa integrin (the inside-out signal). Once activated GPIIb/IIIa binds the dimeric fibrinogen molecule required for platelet aggregation. The active intracellular MMP-2 molecule is complexed with JAK 2/STAT 3, as demonstrated by the fact that all three proteins are co-immunoprecipitated with either anti-JAK 2, or anti-STAT 3 antibodies and by immunofluorescence studies. The MMP-2 platelet activation pathway can be synergistically inhibited with the non-selective MMP inhibitor, 1,10-phenanthroline, plus a JAK 2 inhibitor. This activation pathway is distinct from the previously reported calpain-talin activating pathway. The identification of a new central pathway for platelet aggregation presents new potential targets for drug regulation and furthers our understanding of the complexity of platelet activation mechanisms.


Assuntos
Plaquetas/efeitos dos fármacos , Regulação da Expressão Gênica , Metaloproteinase 2 da Matriz/metabolismo , Ativação Plaquetária , Talina/metabolismo , Adulto , Sítios de Ligação , Plaquetas/metabolismo , Calpaína/metabolismo , Quelantes/química , Dimerização , Humanos , Hidrólise , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fenantrolinas/química , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Fatores de Tempo , Zinco/química
2.
FEMS Microbiol Lett ; 322(2): 166-71, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21707734

RESUMO

A newly described bacterial isolate, Acinetobacter sp. HM746599, has been obtained from leatherback sea turtle hatchling blood. The implication is that the hatchling was infected during development in the egg, which is substantiated by other studies to be reported by us in the future. The 16S rRNA gene sequence of the bacterium (GenBank accession number: HM746599) showed the greatest similarity to the identified species, Acinetobacter beijerinckii (97.6-99.78%) and Acinetobacter venetianus (99.78%). Acinetobacter sp. HM746599 are gram-negative, rod-shaped coccobacilli and are hemolytic/cytotoxic to human and sea turtle red blood cells (RBCs). Hemolysis is not the result of any detectable soluble toxin. Acinetobacter beijerinckii and A. venetianus hemolyze sheep RBCs while Acinetobacter sp. HM746599 does not, and unlike A. venetianus, the growth of Acinetobacter sp. HM746599 and A. beijerinckii is not supported by l-arginine. Many Acinetobacter species, especially hemolytic ones, are pathogenic to immunologically compromised humans and it is possible that, in addition to sea turtles, this bacterium might also be a danger to susceptible humans who handle infected hatchlings. The bacteria are available from CCUG (Culture Collection, University Gothenburg, Göteborg, Sweden) and from NRRL (Agricultural Research Service Culture Collection, Peoria, IL).


Assuntos
Infecções por Acinetobacter/veterinária , Acinetobacter/isolamento & purificação , Tartarugas/microbiologia , Acinetobacter/classificação , Acinetobacter/genética , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/transmissão , Animais , Técnicas de Tipagem Bacteriana , Humanos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
3.
Neurotox Res ; 16(1): 14-29, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19526295

RESUMO

Increased bioenergetics demand can stimulate compensatory increases in glucose metabolism. We previously reported that neural cells expressing the brain uncoupling protein UCP4 exhibit enhanced dependency on glucose for support of cellular bioenergetics and survival. The switch from oxidative toward glycolytic metabolism reduces the production of toxic reactive oxygen species (ROS) and increases cellular resistance to toxicity induced by 3-nitropropionic acid, a mitochondrial complex II inhibitor that compromises cellular bioenergetics. In this study we elucidate the underlying mechanism whereby expression of UCP4 promotes bioenergetics adaptation and cell survival. We found that activation of extracellular signal-regulated kinases (ERKs) is necessary and sufficient for the increased dependency on glucose utilization. Pharmacological inhibition of ERKs not only abrogated bioenergetics adaptation but also reduced the activation of cAMP-responsive element-binding (CREB) protein suggesting that CREB protein signaling contributes in part to UCP4-dependent cell death rescue from 3-nitropropionic acid-induced toxicity. We also demonstrated that activation of ERKs by growth factors ameliorated the bioenergetics compromise and reduced cellular toxicity induced by 3-nitropropionic acid. Collectively, our results support the involvement of ERKs in UCP4 dependent bioenergetics adaptation and cell survival.


Assuntos
Metabolismo Energético/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Nitrocompostos/toxicidade , Propionatos/toxicidade , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Glucose/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Desacoplamento Mitocondrial , Fator de Crescimento Neural/farmacologia , Células PC12 , Ratos , Estatísticas não Paramétricas , Fatores de Tempo
4.
J Biol Chem ; 281(49): 37391-403, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17035241

RESUMO

An increase in the cytoplasmic-free Ca(2+) concentration mediates cellular responses to environmental signals that influence a range of processes, including gene expression, motility, secretion of hormones and neurotransmitters, changes in energy metabolism, and apoptosis. Mitochondria play important roles in cellular Ca(2+) homeostasis and signaling, but the roles of specific mitochondrial proteins in these processes are unknown. Uncoupling proteins (UCPs) are a family of proteins located in the inner mitochondrial membrane that can dissociate oxidative phosphorylation from respiration, thereby promoting heat production and decreasing oxyradical production. Here we show that UCP4, a neuronal UCP, influences store-operated Ca(2+) entry, a process in which depletion of endoplasmic reticulum Ca(2+) stores triggers Ca(2+) influx through plasma membrane "store-operated" channels. PC12 neural cells expressing human UCP4 exhibit reduced Ca(2+) entry in response to thapsigargin-induced endoplasmic reticulum Ca(2+) store depletion. The elevations of cytoplasmic and intramitochondrial Ca(2+) concentrations and mitochondrial oxidative stress induced by thapsigargin were attenuated in cells expressing UCP4. The stabilization of Ca(2+) homeostasis and preservation of mitochondrial function by UCP4 was correlated with reduced mitochondrial reactive oxygen species generation, oxidative stress, and Gadd153 up-regulation and increased resistance of the cells to death. Reduced Ca(2+)-dependent cytosolic phospholipase A2 activation and oxidative metabolism of arachidonic acid also contributed to the stabilization of mitochondrial function in cells expressing human UCP4. These findings demonstrate that UCP4 can regulate cellular Ca(2+) homeostasis, suggesting that UCPs may play roles in modulating Ca(2+) signaling in physiological and pathological conditions.


Assuntos
Cálcio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Sinalização do Cálcio/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Ceramidas/farmacologia , DNA Complementar/genética , Homeostase , Humanos , Técnicas In Vitro , Potencial da Membrana Mitocondrial , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/metabolismo , Proteínas de Desacoplamento Mitocondrial , Neurônios/citologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tapsigargina/farmacologia , Transfecção , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...