Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 66(6): 780-788, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622523

RESUMO

Ca2+ is a ubiquitous intracellular messenger that controls diverse cellular functions but can become toxic and cause cell death. Selective control of specific targets depends on spatiotemporal patterning of the calcium signal and decoding it by multiple, tunable, and often strategically positioned Ca2+-sensing elements. Ca2+ is detected by specialized motifs on proteins that have been biochemically characterized decades ago. However, the field of Ca2+ sensing has been reenergized by recent progress in fluorescent technology, genetics, and cryo-EM. These approaches exposed local Ca2+-sensing mechanisms inside organelles and at the organellar interfaces, revealed how Ca2+ binding might work to open some channels, and identified human mutations and disorders linked to a variety of Ca2+-sensing proteins. Here we attempt to place these new developments in the context of intracellular calcium homeostasis and signaling.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Motivos de Aminoácidos , Animais , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Predisposição Genética para Doença , Homeostase , Humanos , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas Sensoras de Cálcio Intracelular/ultraestrutura , Ativação do Canal Iônico , Mutação , Fenótipo , Domínios Proteicos , Relação Estrutura-Atividade
2.
Biochim Biophys Acta ; 1862(6): 1159-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26976332

RESUMO

Cardiac ischemia-reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation (OxPhos) and compartmentalized intracellular energy transfer via the phosphocreatine/creatine kinase (CK) network. The restriction of ATP/ADP diffusion at the level of the mitochondrial outer membrane (MOM) is an essential element of compartmentalized energy transfer. In adult cardiomyocytes, the MOM permeability to ADP is regulated by the interaction of voltage-dependent anion channel with cytoskeletal proteins, particularly with ß tubulin II. The IR-injury alters the expression and the intracellular arrangement of cytoskeletal proteins. The objective of the present study was to investigate the impact of IR on the intracellular arrangement of ß tubulin II and its effect on the regulation of mitochondrial respiration. Perfused rat hearts were subjected to total ischemia (for 20min (I20) and 45min (I45)) or to ischemia followed by 30min of reperfusion (I20R and I45R groups). High resolution respirometry and fluorescent confocal microscopy were used to study respiration, ß tubulin II and mitochondrial arrangements in cardiac fibers. The results of these experiments evidence a heterogeneous response of mitochondria to IR-induced damage. Moreover, the intracellular rearrangement of ß tubulin II, which in the control group colocalized with mitochondria, was associated with increased apparent affinity of OxPhos for ADP, decreased regulation of respiration by creatine without altering mitochondrial CK activity and the ratio between octameric to dimeric isoenzymes. The results of this study allow us to highlight changes of mitochondrial interactions with cytoskeleton as one of the possible mechanisms underlying cardiac IR injury.


Assuntos
Citoesqueleto/patologia , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Tubulina (Proteína)/metabolismo , Animais , Respiração Celular , Citoesqueleto/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Ratos Wistar , Tubulina (Proteína)/ultraestrutura
3.
Biochim Biophys Acta ; 1837(2): 232-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24189374

RESUMO

The aim of this work was to study the regulation of respiration and energy fluxes in permeabilized oxidative and glycolytic skeletal muscle fibers, focusing also on the role of cytoskeletal protein tubulin ßII isotype in mitochondrial metabolism and organization. By analyzing accessibility of mitochondrial ADP, using respirometry and pyruvate kinase-phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of respiration for ADP can be directly linked to the permeability of the mitochondrial outer membrane (MOM). Previous studies have shown that MOM permeability in cardiomyocytes can be regulated by VDAC interaction with cytoskeletal protein, ßII tubulin. We found that in oxidative soleus skeletal muscle the high apparent Km for ADP is associated with low MOM permeability and high expression of non-polymerized ßII tubulin. Very low expression of non-polymerized form of ßII tubulin in glycolytic muscles is associated with high MOM permeability for adenine nucleotides (low apparent Km for ADP).


Assuntos
Citoesqueleto/metabolismo , Mitocôndrias/metabolismo , Músculo Estriado/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Western Blotting , Respiração Celular , Proteínas do Citoesqueleto/metabolismo , Metabolismo Energético , Masculino , Análise do Fluxo Metabólico , Microscopia Confocal , Membranas Mitocondriais/metabolismo , Miocárdio/metabolismo , Permeabilidade , Ratos , Ratos Wistar , Tubulina (Proteína)/metabolismo
4.
Front Physiol ; 4: 151, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825460

RESUMO

Bioenergetic profiling of cancer cells is of great potential because it can bring forward new and effective therapeutic strategies along with early diagnosis. Metabolic Control Analysis (MCA) is a methodology that enables quantification of the flux control exerted by different enzymatic steps in a metabolic network thus assessing their contribution to the system's function. Our main goal is to demonstrate the applicability of MCA for in situ studies of energy metabolism in human breast and colorectal cancer cells as well as in normal tissues. We seek to determine the metabolic conditions leading to energy flux redirection in cancer cells. A main result obtained is that the adenine nucleotide translocator exhibits the highest control of respiration in human breast cancer thus becoming a prospective therapeutic target. Additionally, we present evidence suggesting the existence of mitochondrial respiratory supercomplexes that may represent a way by which cancer cells avoid apoptosis. The data obtained show that MCA applied in situ can be insightful in cancer cell energetic research.

5.
Biochem J ; 445(3): 333-6, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22551241

RESUMO

The permeabilized cells and muscle fibres technique allows one to study the functional properties of mitochondria without their isolation, thus preserving all of the contacts with cellular structures, mostly the cytoskeleton, to study the whole mitochondrial population in the cell in their natural surroundings and it is increasingly being used in both experimental and clinical studies. The functional parameters (affinity for ADP in regulation of respiration) of mitochondria in permeabilized myocytes or myocardial fibres are very different from those in isolated mitochondria in vitro. In the present study, we have analysed the data showing the dependence of this parameter upon the muscle contractile state. Most remarkable is the effect of recently described Ca(2+)-independent contraction of permeabilized muscle fibres induced by elevated temperatures (30-37°C). We show that very similar strong spontaneous Ca(2+)-independent contraction can be produced by proteolytic treatment of permeabilized muscle fibres that result in a disorganization of mitochondrial arrangement, leading to a significant increase in affinity for ADP. These data show that Ca(2+)-insensitive contraction may be related to the destruction of cytoskeleton structures by intracellular proteases. Therefore the use of their inhibitors is strongly advised at the permeabilization step with careful washing of fibres or cells afterwards. A possible physiologically relevant relationship between Ca(2+)-regulated ATP-dependent contraction and mitochondrial functional parameters is also discussed.


Assuntos
Contração Muscular/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Técnicas In Vitro , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...