Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2304671121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564640

RESUMO

Contingency tables, data represented as counts matrices, are ubiquitous across quantitative research and data-science applications. Existing statistical tests are insufficient however, as none are simultaneously computationally efficient and statistically valid for a finite number of observations. In this work, motivated by a recent application in reference-free genomic inference [K. Chaung et al., Cell 186, 5440-5456 (2023)], we develop Optimized Adaptive Statistic for Inferring Structure (OASIS), a family of statistical tests for contingency tables. OASIS constructs a test statistic which is linear in the normalized data matrix, providing closed-form P-value bounds through classical concentration inequalities. In the process, OASIS provides a decomposition of the table, lending interpretability to its rejection of the null. We derive the asymptotic distribution of the OASIS test statistic, showing that these finite-sample bounds correctly characterize the test statistic's P-value up to a variance term. Experiments on genomic sequencing data highlight the power and interpretability of OASIS. Using OASIS, we develop a method that can detect SARS-CoV-2 and Mycobacterium tuberculosis strains de novo, which existing approaches cannot achieve. We demonstrate in simulations that OASIS is robust to overdispersion, a common feature in genomic data like single-cell RNA sequencing, where under accepted noise models OASIS provides good control of the false discovery rate, while Pearson's [Formula: see text] consistently rejects the null. Additionally, we show in simulations that OASIS is more powerful than Pearson's [Formula: see text] in certain regimes, including for some important two group alternatives, which we corroborate with approximate power calculations.


Assuntos
Genoma , Genômica , Mapeamento Cromossômico
2.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36993432

RESUMO

SPLASH is an unsupervised, reference-free, and unifying algorithm that discovers regulated sequence variation through statistical analysis of k-mer composition, subsuming many application-specific methods. Here, we introduce SPLASH2, a fast, scalable implementation of SPLASH based on an efficient k-mer counting approach. SPLASH2 enables rapid analysis of massive datasets from a wide range of sequencing technologies and biological contexts, delivering unparalleled scale and speed. The SPLASH2 algorithm unveils new biology (without tuning) in single-cell RNA-sequencing data from human muscle cells, as well as bulk RNA-seq from the entire Cancer Cell Line Encyclopedia (CCLE), including substantial unannotated alternative splicing in cancer transcriptome. The same untuned SPLASH2 algorithm recovers the BCR-ABL gene fusion, and detects circRNA sensitively and specifically, underscoring SPLASH2's unmatched precision and scalability across diverse RNA-seq detection tasks.

3.
Cell ; 186(25): 5440-5456.e26, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065078

RESUMO

Today's genomics workflows typically require alignment to a reference sequence, which limits discovery. We introduce a unifying paradigm, SPLASH (Statistically Primary aLignment Agnostic Sequence Homing), which directly analyzes raw sequencing data, using a statistical test to detect a signature of regulation: sample-specific sequence variation. SPLASH detects many types of variation and can be efficiently run at scale. We show that SPLASH identifies complex mutation patterns in SARS-CoV-2, discovers regulated RNA isoforms at the single-cell level, detects the vast sequence diversity of adaptive immune receptors, and uncovers biology in non-model organisms undocumented in their reference genomes: geographic and seasonal variation and diatom association in eelgrass, an oceanic plant impacted by climate change, and tissue-specific transcripts in octopus. SPLASH is a unifying approach to genomic analysis that enables expansive discovery without metadata or references.


Assuntos
Algoritmos , Genômica , Genoma , Análise de Sequência de RNA , Humanos , Antígenos HLA/genética , Análise de Célula Única
4.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961606

RESUMO

Contingency tables, data represented as counts matrices, are ubiquitous across quantitative research and data-science applications. Existing statistical tests are insufficient however, as none are simultaneously computationally efficient and statistically valid for a finite number of observations. In this work, motivated by a recent application in reference-free genomic inference (1), we develop OASIS (Optimized Adaptive Statistic for Inferring Structure), a family of statistical tests for contingency tables. OASIS constructs a test-statistic which is linear in the normalized data matrix, providing closed form p-value bounds through classical concentration inequalities. In the process, OASIS provides a decomposition of the table, lending interpretability to its rejection of the null. We derive the asymptotic distribution of the OASIS test statistic, showing that these finite-sample bounds correctly characterize the test statistic's p-value up to a variance term. Experiments on genomic sequencing data highlight the power and interpretability of OASIS. The same method based on OASIS significance calls detects SARS-CoV-2 and Mycobacterium Tuberculosis strains de novo, which cannot be achieved with current approaches. We demonstrate in simulations that OASIS is robust to overdispersion, a common feature in genomic data like single cell RNA-sequencing, where under accepted noise models OASIS still provides good control of the false discovery rate, while Pearson's X2 test consistently rejects the null. Additionally, we show on synthetic data that OASIS is more powerful than Pearson's X2 test in certain regimes, including for some important two group alternatives, which we corroborate with approximate power calculations.

5.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37503014

RESUMO

The authors have withdrawn this manuscript due to a duplicate posting of manuscript number BIORXIV/2022/497555. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author. The correct preprint can be found at doi: https://doi.org/10.1101/2022.06.24.497555.

6.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35794890

RESUMO

Today's genomics workflows typically require alignment to a reference sequence, which limits discovery. We introduce a new unifying paradigm, SPLASH (Statistically Primary aLignment Agnostic Sequence Homing), an approach that directly analyzes raw sequencing data to detect a signature of regulation: sample-specific sequence variation. The approach, which includes a new statistical test, is computationally efficient and can be run at scale. SPLASH unifies detection of myriad forms of sequence variation. We demonstrate that SPLASH identifies complex mutation patterns in SARS-CoV-2 strains, discovers regulated RNA isoforms at the single cell level, documents the vast sequence diversity of adaptive immune receptors, and uncovers biology in non-model organisms undocumented in their reference genomes: geographic and seasonal variation and diatom association in eelgrass, an oceanic plant impacted by climate change, and tissue-specific transcripts in octopus. SPLASH is a new unifying approach to genomic analysis that enables an expansive scope of discovery without metadata or references.

7.
Patterns (N Y) ; 1(6): 100081, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-33205128

RESUMO

Pairwise sequence alignment is often a computational bottleneck in genomic analysis pipelines, particularly in the context of third-generation sequencing technologies. To speed up this process, the pairwise k-mer Jaccard similarity is sometimes used as a proxy for alignment size in order to filter pairs of reads, and min-hashes are employed to efficiently estimate these similarities. However, when the k-mer distribution of a dataset is significantly non-uniform (e.g., due to GC biases and repeats), Jaccard similarity is no longer a good proxy for alignment size. In this work, we introduce a min-hash-based approach for estimating alignment sizes called Spectral Jaccard Similarity, which naturally accounts for uneven k-mer distributions. The Spectral Jaccard Similarity is computed by performing a singular value decomposition on a min-hash collision matrix. We empirically show that this new metric provides significantly better estimates for alignment sizes, and we provide a computationally efficient estimator for these spectral similarity scores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...