Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Vivo ; 20(5): 573-82, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17091762

RESUMO

Pulmonary irradiation fibrosis involves migration to the lungs of bone marrow origin myofibroblast progenitor cells (marrow stromal cells (MSCs)). Smad3-/- mice display decreased ionizing irradiation-induced skin fibrosis, defective osteochondrogenesis and other abnormalities thought to be associated with a defective stromal cell response(s) to transforming growth factor-beta (TGFFbeta). Clonal bone marrow stromal cell lines were derived from the adherent layer of continuous bone marrow cultures of homozygous deletion recombinant negative Smad3-/- mice and Smad3+/+ littermates. Quantitation in an Automated Cell Tracking System of the in vitro single cell migratory capacity over five days demonstrated a significant decrease in locomotion in microns per 24 h of Smad3-/- compared to Smad3+/+ clonal MSC lines. Reexpression by retroviral vector transfection of the Smad3 but not control ds-red transgene restored in vitro migratory capacity. Intravenously injected GFP transgene product labeled Smad3-/- (MSCs) seeded 10-fold less effectively than ds-red transgene product labeled Smad3+/+ cells to the 80 days post 20 Gy irradiated lungs of C57BL/6J mice and proliferated less significantly for 60 days after cell injection. Female mice chimeric for male Smad3-/- compared to Smad3+/+ marrow showed decreased irradiation pulmonary fibrosis, Y+ stromal cell migration to the lungs, and improved survival. The data show that the reduced in vitro and in vivo migratory capacity of Smad3-/- bone marrow stromal cells correlates with decreased radiation pulmonary fibrosis observed in mice chimeric for Smad3-/- marrow.


Assuntos
Células da Medula Óssea/fisiologia , Movimento Celular , Fibrose Pulmonar/induzido quimicamente , Proteína Smad3/genética , Células Estromais/fisiologia , Animais , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Transplante de Medula Óssea/fisiologia , Proliferação de Células , Células Clonais/fisiologia , Feminino , Proteínas Luminescentes/genética , Pulmão/fisiologia , Pulmão/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/etiologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais
2.
Radiat Res ; 165(6): 671-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16802867

RESUMO

Smad3 protein is a prominent member of the Tgfb receptor signaling pathway. Smad3(-/-) mice display decreased radiation-induced skin fibrosis, suggesting a defect in both Tgfb-mediated fibroblast proliferation and migration. We established bone marrow stromal cell lines from Smad3(-/-) mice and homozygous littermate(+/+) mice. Smad3(-/-) cells displayed a significant increase in radiation resistance with a D(0)=2.25+/- 0.14 Gy compared to Smad3(+/+) cells with a D(0)=1.75+/- 0.03 (P=0.023). Radioresistance was abrogated by reinsertion of the human SMAD3 transgene, resulting in a D(0)=1.49 0.10 (P=0.028) for Smad3(-/-)(3) cells. More Smad3(-/-) cells than Smad3(+/+) cells were in the G(2)/M phase; Smad3(-/-)(3) cells were similar to Smad3(+/+) cells. Smad3(+/+) cells exhibited increased apoptosis 24 h after 5 Gy (15%) or 8 Gy (43%) compared to less than 1% in Smad3(-/-) cells exposed to either dose. The movement of Smad3(-/-) cells, measured in an automated cell tracking system, was slower than that of Smad3(+/+) cells. Smad3(-/-)(3) cells resembled Smad3(+/+) cells. These studies establish concordance of a defective Tgfb signal transduction pathway, an increased proportion of G(2)/M cells, and radioresistance. The decreased migratory capacity of Smad3(-/-) cells in vitro correlates with decreased radiation fibrosis in vivo in mice deficient in Tgfb signaling.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad3/metabolismo , Animais , Apoptose/efeitos da radiação , Células da Medula Óssea/efeitos da radiação , Linhagem Celular , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Genes cdc/fisiologia , Genes cdc/efeitos da radiação , Camundongos , Tolerância a Radiação/fisiologia , Células Estromais/citologia , Células Estromais/fisiologia , Células Estromais/efeitos da radiação
3.
BMC Cell Biol ; 6(1): 19, 2005 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15831094

RESUMO

BACKGROUND: Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. RESULTS: We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 microm/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell objects, and uncertainty in the outlining and positioning of cells by automated image analysis. Exponential growth, as monitored by total cell area, did not linearly correlate with absolute cell number, but proved valuable for selection of reliable tracking data and for disclosing between-experiment variations in cell growth. CONCLUSION: These results demonstrate the applicability of a system that uses fully automated image acquisition and analysis to study cell motility and growth. Cellular motility response is determined in an unbiased and comparatively high throughput manner. Abundant ancillary data provide opportunities for uniform filtering according to criteria that select for biological relevance and for providing insight into features of system performance. Data quality measures have been developed that can serve as a basis for the design and quality control of experiments that are facilitated by automation and the 384 well plate format. This system is applicable to large-scale studies such as drug screening and research into effects of complex combinations of factors and matrices on cell phenotype.


Assuntos
Movimento Celular , Proliferação de Células , Automação , Linhagem Celular , Colágeno Tipo I/farmacologia , Técnicas Citológicas/métodos , Diagnóstico por Imagem , Relação Dose-Resposta a Droga , Humanos , Cinética , Laminina/farmacologia , Análise em Microsséries , Osteoblastos/citologia , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...