Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Res Rev ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185567

RESUMO

Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.

2.
Discov Oncol ; 15(1): 356, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152304

RESUMO

Gastric cancer remains a significant health challenge despite advancements in diagnosis and treatment. Early detection is critical to reducing mortality, necessitating the investigation of molecular mechanisms underlying gastric cancer progression. This study focuses on BRD4 expression and its correlation with miR-26a-3p, DLG5-AS1, and JMJD1C-AS1 lncRNAs in gastric cancer. Analysis of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed significant upregulation of BRD4 in gastric cancer tissues compared to normal tissues, correlating negatively with miR-26a-3p and positively with DLG5-AS1 and JMJD1C-AS1 lncRNAs. Quantitative RT-PCR confirmed these findings in 25 gastric cancer tissue samples and 25 normal samples. BRD4's overexpression was associated with reduced survival rates and older patient age. MiR-26a-3p, a known tumor suppressor, showed decreased expression in gastric cancer tissues, with ROC analysis suggesting it, alongside BRD4, as a potential diagnostic biomarker. Additionally, bioinformatics predicted miR-26a-3p's interaction with BRD4 mRNA. Upregulated lncRNAs DLG5-AS1 and JMJD1C-AS1 likely act as competing endogenous RNAs, sponging miR-26a-3p, thus promoting BRD4 dysregulation. These lncRNAs have not been previously studied in gastric cancer. The findings propose a novel BRD4/lncRNA/miRNA regulatory axis in gastric cancer, highlighting the potential of BRD4, DLG5-AS1, and JMJD1C-AS1 as biomarkers for early diagnosis. Further studies with larger sample sizes and in vivo and in vitro experiments are needed to elucidate this regulatory mechanism's role in gastric cancer progression.

3.
Noncoding RNA Res ; 9(4): 1292-1307, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39045083

RESUMO

The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(10): 7891-7903, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38748228

RESUMO

Gastric cancer, as the fifth most frequent disease and the fourth foremost cause of cancer-related death worldwide, remains a main clinical challenge due to its poor prognosis, limited treatment choices, and ability to metastasize. Combining siRNAs to suppress lncRNA with chemotherapeutic medications is a novel treatment approach that eventually increases the therapeutic efficacy of the drug while lessening its adverse effects. This study was performed with the purpose of examining the impact of inhibiting DLGAP1-AS2 expression on gastric cancer cells' drug chemosensitivity. AGS cells were cultured as the study cell line and were transfected with an optimum dose of DLGAP1-AS2 siRNA and then treated with oxaliplatin. Cell viability was examined using the MTT technique. Apoptosis and cell cycle were evaluated using Annexin V/PI staining and flow cytometry. Later, the scratch test was conducted to investigate the ability of cells to migrate, and the inhibition of the stemness of AGS cells was further investigated through the colony formation method. Finally, the qRT-PCR technique was used to assess the expression of Bax, Bcl-2, Caspase-3, p53, MMP-2, and CD44 genes. The MTT test indicated the effect of gene therapy with siRNA and oxaliplatin in combination reduced the chemotherapy drug dose to 29.92 µM and increased AGS cells' sensitivity to oxaliplatin. Also, the combination therapy caused a significant increase in apoptosis. However, it reduced the stemness feature, the rate of cell viability, proliferation, and metastasis compared to the effect of each treatment alone; the results also showed the arrest of the cell cycle in the Sub G1 phase after the combined treatment and a further reduction in the number and size of the formed colonies. Suppressing the expression of lncRNA DLGAP1-AS2 by siRNA followed by treatment with oxaliplatin can be utilized as an effective and new therapeutic technique for gastric cancer therapy.


Assuntos
Antineoplásicos , Apoptose , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Oxaliplatina , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Oxaliplatina/farmacologia , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 6903-6918, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587542

RESUMO

In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy.


Assuntos
Apoptose , Autofagia , Carmustina , Sobrevivência Celular , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Carmustina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Movimento Celular/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica
6.
Cancer Cell Int ; 23(1): 134, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438760

RESUMO

A wide range of studies have indicated that microRNAs (miRNAs), a type of small single-stranded regulatory RNAs, are dysregulated in a different variety of human cancers. Therefore, they are expected to play important roles in tumorigenesis by functioning as oncogenic (oncomiRs) or tumor-suppressive miRNAs. Subsequently, their potential as diagnostic and therapeutic targets for malignancies has attracted attention in recent years. In particular, studies have revealed the aberrant expression of miR-182 through tumorigenesis and its important roles in various aspects of malignancies, including proliferation, metastasis, and chemoresistance. Accumulating reports have illustrated that miR-182, as a dual-role regulator, directly or indirectly regulates the expression of a wide range of genes and modulates the activity of various signaling pathways involved in tumor progression, such as JAK / STAT3, Wnt / ß-catenin, TGF-ß, and P13K / AKT. Therefore, considering the high therapeutic and diagnostic potential of miR-182, this review aims to point out the effects of miR-182 dysregulation on the signaling pathways involved in tumorigenesis.

7.
J Cell Biochem ; 123(6): 995-1024, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35106829

RESUMO

Long noncoding RNAs (lncRNAs) are a group of noncoding cellular RNAs involved in significant biological phenomena such as differentiation, cell development, genomic imprinting, adjusting the enzymatic activity, regulating chromosome conformation, apoptosis, cell cycle, and cellular senescence. The misregulation of lncRNAs interrupting normal biological processes has been implicated in tumor formation and metastasis, resulting in cancer. Apoptosis and cell cycle, two main biological phenomena, are highly conserved and intimately coupled mechanisms. Hence, some cell cycle regulators can influence both programmed cell death and cell division. Apoptosis eliminates defective and unwanted cells, and the cell cycle enables cells to replicate themselves. The improper regulation of apoptosis and cell cycle contributes to numerous disorders such as neurodegenerative and autoimmune diseases, viral infection, anemia, and mainly cancer. Cellular senescence is a tumor-suppressing response initiated by environmental and internal stress factors. This phenomenon has recently attained more attention due to its therapeutic implications in the field of senotherapy. In this review, the regulatory roles of lncRNAs on apoptosis, cell cycle, and senescence will be discussed. First, the role of lncRNAs in mitochondrial dynamics and apoptosis is addressed. Next, the interaction between lncRNAs and caspases, pro/antiapoptotic proteins, and also EGFR/PI3K/PTEN/AKT/mTORC1 signaling pathway will be investigated. Furthermore, the effect of lncRNAs in the cell cycle is surveyed through interaction with cyclins, cdks, p21, and wnt/ß-catenin/c-myc pathway. Finally, the function of essential lncRNAs in cellular senescence is mentioned.


Assuntos
Neoplasias , RNA Longo não Codificante , Apoptose/genética , Pontos de Checagem do Ciclo Celular , Divisão Celular , Senescência Celular/genética , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA